These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33931914)

  • 1. Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer.
    Tarhan T
    Water Environ Res; 2021 Sep; 93(9):1789-1803. PubMed ID: 33931914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.
    Senturk HB; Ozdes D; Gundogdu A; Duran C; Soylak M
    J Hazard Mater; 2009 Dec; 172(1):353-62. PubMed ID: 19656623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies.
    Ooi J; Lee LY; Hiew BYZ; Thangalazhy-Gopakumar S; Lim SS; Gan S
    Bioresour Technol; 2017 Dec; 245(Pt A):656-664. PubMed ID: 28917100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Activated Carbon from Lignocellulosic Agricultural Waste for the Removal of Acetampirid Pesticide from Aqueous Solutions.
    Mohammad SG; Ahmed SM; Amr AEE; Kamel AH
    Molecules; 2020 May; 25(10):. PubMed ID: 32429511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents.
    Wang Y; Zhao L; Hou J; Peng H; Wu J; Liu Z; Guo X
    Water Sci Technol; 2018 Jun; 77(11-12):2699-2708. PubMed ID: 29944134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions.
    Filho ACD; Mazzocato AC; Dotto GL; Thue PS; Pavan FA
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19909-19919. PubMed ID: 28689285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies.
    Bessashia W; Berredjem Y; Hattab Z; Bououdina M
    Environ Res; 2020 Jul; 186():109484. PubMed ID: 32302870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum-Chitosan Sponge.
    K Ramakrishnan R; Padil VVT; Wacławek S; Černík M; Varma RS
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33451026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.
    Jin T; Yuan W; Xue Y; Wei H; Zhang C; Li K
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5238-5248. PubMed ID: 28004365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raw sawdust utilization for the removal of acid red57 and basic fuchsin dyes from aqueous solution: equilibrium, kinetics, and thermodynamic investigation.
    Sorour FH; Marouf YM; Abd-ElMonem NM; Aboeleneen NM; Mansour RA
    Int J Phytoremediation; 2024; 26(5):669-683. PubMed ID: 37740461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional polysaccharide structure as green adsorbent for efficient removal and preconcentration of chlorophenols from the aqueous medium: experimental and modeling approaches.
    Ferrah N; Merghache D; Chabane M; Derdour A; Mansour R; Nouri T; Cheikh SA; Zerriahen EH
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93531-93545. PubMed ID: 37507560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics.
    Inthapanya X; Wu S; Han Z; Zeng G; Wu M; Yang C
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5944-5954. PubMed ID: 30612377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of hierarchically porous carbon from cellulose as highly efficient adsorbent for the removal of organic dyes from aqueous solutions.
    Hao Y; Wang Z; Wang Z; He Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():298-303. PubMed ID: 30390528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies.
    Munagapati VS; Wen JC; Pan CL; Gutha Y; Wen JH; Reddy GM
    Int J Phytoremediation; 2020; 22(3):267-278. PubMed ID: 31464513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff's base@Fe
    Weijiang Z; Yace Z; Yuvaraja G; Jiao X
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):422-430. PubMed ID: 28711619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal.
    Arabkhani P; Asfaram A
    J Hazard Mater; 2020 Feb; 384():121394. PubMed ID: 31628059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic.
    Dawood S; Sen TK; Phan C
    Bioresour Technol; 2017 Dec; 246():76-81. PubMed ID: 28711298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater.
    Sarojini G; Venkatesh Babu S; Rajamohan N; Rajasimman M
    Environ Res; 2022 Mar; 204(Pt B):112132. PubMed ID: 34571029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.
    Subbaiah MV; Kim DS
    Ecotoxicol Environ Saf; 2016 Jun; 128():109-17. PubMed ID: 26921544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of basic fuchsin using soybean straw hydrolyzed by subcritical water.
    Caponi N; Silva LFO; Oliveira MLS; Franco DSP; Netto MS; Vedovatto F; Tres MV; Zabot GL; Abaide ER; Dotto GL
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):68547-68554. PubMed ID: 35543787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.