BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33932219)

  • 21. Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8.
    Min J; Wang J; Chen W; Hu X
    AMB Express; 2018 Mar; 8(1):43. PubMed ID: 29560541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation.
    Hofmann KW; Knackmuss HJ; Heiss G
    Appl Environ Microbiol; 2004 May; 70(5):2854-60. PubMed ID: 15128543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7.
    Di Canito A; Zampolli J; Orro A; D'Ursi P; Milanesi L; Sello G; Steinbüchel A; Di Gennaro P
    BMC Genomics; 2018 Aug; 19(1):587. PubMed ID: 30081830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.
    Lee EH; Kim J; Cho KS; Ahn YG; Hwang GS
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):64-77. PubMed ID: 19756804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodococcus wratislaviensis strain 9: An efficient p-nitrophenol degrader with a great potential for bioremediation.
    Subashchandrabose SR; Venkateswarlu K; Krishnan K; Naidu R; Lockington R; Megharaj M
    J Hazard Mater; 2018 Apr; 347():176-183. PubMed ID: 29306813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus.
    Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis.
    Zhao T; Gao Y; Yu T; Zhang Y; Zhang Z; Zhang L; Zhang L
    Ecotoxicol Environ Saf; 2021 Jan; 208():111709. PubMed ID: 33396040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of 2-chloro-4-nitrophenol in a gram negative bacterium, Burkholderia sp. RKJ 800.
    Arora PK; Jain RK
    PLoS One; 2012; 7(6):e38676. PubMed ID: 22701692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30.
    Zablotowicz RM; Leung KT; Alber T; Cassidy MB; Trevors JT; Lee H; Veldhuis L; Hall JC
    Can J Microbiol; 1999 Oct; 45(10):840-8. PubMed ID: 10907421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.
    Liu Z; Huang H; Qi M; Wang X; Adebanjo OO; Lu Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses.
    Long Z; Wang X; Wang Y; Dai H; Li C; Xue Y; Deng Y; Zhang H; Yu Y; Fang H
    Sci Total Environ; 2021 Feb; 754():142137. PubMed ID: 32916495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1.
    Nga DP; Altenbuchner J; Heiss GS
    J Bacteriol; 2004 Jan; 186(1):98-103. PubMed ID: 14679229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of inoculation of Burkholderia sp. strain SJ98 on bacterial community dynamics and para-nitrophenol, 3-methyl-4-nitrophenol, and 2-chloro-4-nitrophenol degradation in soil.
    Min J; Wang B; Hu X
    Sci Rep; 2017 Jul; 7(1):5983. PubMed ID: 28729667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Rhodococcus wratislaviensis strain J3 that degrades 4-nitrocatechol and other nitroaromatic compounds.
    Navrátilová J; Tvrzová L; Durnová E; Spröer C; Sedlácek I; Neca J; Nemec M
    Antonie Van Leeuwenhoek; 2005 Feb; 87(2):149-53. PubMed ID: 15723176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the skatole biodegradation process in an enrichment consortium using integrated omics and culture-dependent strategies.
    Ma Q; Meng N; Su J; Li Y; Gu J; Wang Y; Wang J; Qu Y; Zhao Z; Sun Y
    J Environ Sci (China); 2023 May; 127():688-699. PubMed ID: 36522097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons.
    Zhang Y; Qin F; Qiao J; Li G; Shen C; Huang T; Hu Z
    J Bacteriol; 2012 Jul; 194(13):3546. PubMed ID: 22689235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradation of 4-nitroanisole by two Rhodococcus spp.
    Schäfer A; Harms H; Zehnder AJ
    Biodegradation; 1996 Jun; 7(3):249-55. PubMed ID: 8782395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98.
    Min J; Zhang JJ; Zhou NY
    Appl Environ Microbiol; 2014 Oct; 80(19):6212-22. PubMed ID: 25085488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.