These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 33932291)
21. Winter warming offsets one half of the spring warming effects on leaf unfolding. Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626 [TBL] [Abstract][Full Text] [Related]
22. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Meng L; Zhou Y; Gu L; Richardson AD; Peñuelas J; Fu Y; Wang Y; Asrar GR; De Boeck HJ; Mao J; Zhang Y; Wang Z Glob Chang Biol; 2021 Jun; 27(12):2914-2927. PubMed ID: 33651464 [TBL] [Abstract][Full Text] [Related]
23. Influence of winter precipitation on spring phenology in boreal forests. Yun J; Jeong SJ; Ho CH; Park CE; Park H; Kim J Glob Chang Biol; 2018 Nov; 24(11):5176-5187. PubMed ID: 30067888 [TBL] [Abstract][Full Text] [Related]
25. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Güsewell S; Furrer R; Gehrig R; Pietragalla B Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135 [TBL] [Abstract][Full Text] [Related]
26. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants. Wang H; Wang H; Ge Q; Dai J Front Plant Sci; 2020; 11():443. PubMed ID: 32373144 [TBL] [Abstract][Full Text] [Related]
27. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292 [TBL] [Abstract][Full Text] [Related]
28. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650 [TBL] [Abstract][Full Text] [Related]
29. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder ( Prevéy JS; Harrington CA PeerJ; 2018; 6():e5221. PubMed ID: 30280010 [TBL] [Abstract][Full Text] [Related]
30. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L. Garrigues R; Dox I; Flores O; Marchand LJ; Malyshev AV; Beemster G; AbdElgawad H; Janssens I; Asard H; Campioli M Tree Physiol; 2023 Oct; 43(10):1718-1730. PubMed ID: 37364048 [TBL] [Abstract][Full Text] [Related]
31. Understory plants evade shading in a temperate deciduous forest amid climate variability by shifting phenology in synchrony with canopy trees. Augspurger CK; Salk CF PLoS One; 2024; 19(6):e0306023. PubMed ID: 38924003 [TBL] [Abstract][Full Text] [Related]
32. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Chen L; Huang JG; Ma Q; Hänninen H; Rossi S; Piao S; Bergeron Y Glob Chang Biol; 2018 Sep; 24(9):3969-3975. PubMed ID: 29697173 [TBL] [Abstract][Full Text] [Related]
33. Integrating experiments to predict interactive cue effects on spring phenology with warming. Wolkovich EM; Chamberlain CJ; Buonaiuto DM; Ettinger AK; Morales-Castilla I New Phytol; 2022 Sep; 235(5):1719-1728. PubMed ID: 35599356 [TBL] [Abstract][Full Text] [Related]
34. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. Pagter M; Andersen UB; Andersen L AoB Plants; 2015 Mar; 7():. PubMed ID: 25802249 [TBL] [Abstract][Full Text] [Related]
35. Daylength predominates the bud growth initiation of winter deciduous forest trees in the monsoon region of China. Lang W; Qian S; Chen X Front Plant Sci; 2023; 14():1327509. PubMed ID: 38273945 [TBL] [Abstract][Full Text] [Related]
36. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Fu YH; Zhang X; Piao S; Hao F; Geng X; Vitasse Y; Zohner C; Peñuelas J; Janssens IA Glob Chang Biol; 2019 Jul; 25(7):2410-2418. PubMed ID: 30927554 [TBL] [Abstract][Full Text] [Related]
37. Rethinking false spring risk. Chamberlain CJ; Cook BI; García de Cortázar-Atauri I; Wolkovich EM Glob Chang Biol; 2019 Jul; 25(7):2209-2220. PubMed ID: 30953573 [TBL] [Abstract][Full Text] [Related]
38. Inter-Individual Budburst Variation in Malyshev AV; van der Maaten E; Garthen A; Maß D; Schwabe M; Kreyling J Front Plant Sci; 2022; 13():853521. PubMed ID: 35498678 [TBL] [Abstract][Full Text] [Related]
39. Temperate deciduous shrub phenology: the overlooked forest layer. Donnelly A; Yu R Int J Biometeorol; 2021 Mar; 65(3):343-355. PubMed ID: 31209600 [TBL] [Abstract][Full Text] [Related]
40. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Tourville JC; Murray GLD; Nelson SJ Ecology; 2024 Oct; 105(10):e4403. PubMed ID: 39205387 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]