BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 33932397)

  • 21. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons.
    Streeter KA; Sunshine MD; Patel S; Gonzalez-Rothi EJ; Reier PJ; Baekey DM; Fuller DD
    J Neurosci; 2017 Aug; 37(35):8349-8362. PubMed ID: 28751456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety and Feasibility of Cervical and Thoracic Transcutaneous Spinal Cord Stimulation to Improve Hand Motor Function in Children With Chronic Spinal Cord Injury.
    Singh G; Keller A; Lucas K; Borders C; Stout D; King M; Parikh P; Stepp N; Ugiliweneza B; D'Amico JM; Gerasimenko Y; Behrman AL
    Neuromodulation; 2024 Jun; 27(4):661-671. PubMed ID: 37269282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Upper Limb Motor Recovery on Functional Independence After Traumatic Low Cervical Spinal Cord Injury.
    Javeed S; Zhang JK; Greenberg JK; Botterbush K; Benedict B; Plog B; Gupta VP; Dibble CF; Khalifeh JM; Wen H; Chen Y; Park Y; Belzberg A; Tuffaha S; Burks SS; Levi AD; Zager EL; Faraji AH; Mahan MA; Midha R; Wilson TJ; Juknis N; Ray WZ
    J Neurotrauma; 2024 May; 41(9-10):1211-1222. PubMed ID: 38062795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brief exposure to systemic hypoxia enhances plasticity of the central nervous system in spinal cord injured animals and man.
    Sandhu MS; Rymer WZ
    Curr Opin Neurol; 2021 Dec; 34(6):819-824. PubMed ID: 34545014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initiating daily acute intermittent hypoxia (dAIH) therapy at 1-week after contusion spinal cord injury (SCI) improves lower urinary tract function in rat.
    Wang C; Collins WF; Solomon IC
    Exp Neurol; 2023 Jan; 359():114242. PubMed ID: 36240880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of high-frequency transcranial magnetic stimulation on functional performance in individuals with incomplete spinal cord injury: study protocol for a randomized controlled trial.
    de Araújo AVL; Barbosa VRN; Galdino GS; Fregni F; Massetti T; Fontes SL; de Oliveira Silva D; da Silva TD; Monteiro CBM; Tonks J; Magalhães FH
    Trials; 2017 Nov; 18(1):522. PubMed ID: 29110687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeine Enhances Intermittent Hypoxia-Induced Gains in Walking Function for People with Chronic Spinal Cord Injury.
    Trumbower RD; Barth S; Tuthill C; Slocum C; Shan G; Zafonte R; Mitchell GS
    J Neurotrauma; 2022 Dec; 39(23-24):1756-1763. PubMed ID: 35686460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia.
    Benavides FD; Jo HJ; Lundell H; Edgerton VR; Gerasimenko Y; Perez MA
    J Neurosci; 2020 Mar; 40(13):2633-2643. PubMed ID: 31996455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tetraplegia is associated with increased hypoxic ventilatory response during nonrapid eye movement sleep.
    Vaughan S; Sankari A; Carroll S; Eshraghi M; Obiakor H; Yarandi H; Chowdhuri S; Salloum A; Badr MS
    Physiol Rep; 2022 Sep; 10(17):e15455. PubMed ID: 36065854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Faw TD; Lakhani B; Schmalbrock P; Knopp MV; Lohse KR; Kramer JLK; Liu H; Nguyen HT; Phillips EG; Bratasz A; Fisher LC; Deibert RJ; Boyd LA; McTigue DM; Basso DM
    Exp Neurol; 2021 Dec; 346():113853. PubMed ID: 34464653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study.
    Yozbatiran N; Keser Z; Davis M; Stampas A; O'Malley MK; Cooper-Hay C; Frontera J; Fregni F; Francisco GE
    NeuroRehabilitation; 2016 Jul; 39(3):401-11. PubMed ID: 27589510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. APOE4, Age, and Sex Regulate Respiratory Plasticity Elicited by Acute Intermittent Hypercapnic-Hypoxia.
    Nair J; Welch JF; Marciante AB; Hou T; Lu Q; Fox EJ; Mitchell GS
    Function (Oxf); 2023; 4(5):zqad026. PubMed ID: 37575478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cervical Spinal Cord Transcutaneous Stimulation Improves Upper Extremity and Hand Function in People With Complete Tetraplegia: A Case Study.
    Zhang F; Momeni K; Ramanujam A; Ravi M; Carnahan J; Kirshblum S; Forrest GF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3167-3174. PubMed ID: 33382659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury.
    Navarrete-Opazo A; Vinit S; Dougherty BJ; Mitchell GS
    Exp Neurol; 2015 Apr; 266():1-10. PubMed ID: 25687551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermittent hypoxia induces functional recovery following cervical spinal injury.
    Vinit S; Lovett-Barr MR; Mitchell GS
    Respir Physiol Neurobiol; 2009 Nov; 169(2):210-7. PubMed ID: 19651247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools.
    Darrow MJ; Torres M; Sosa MJ; Danaphongse TT; Haider Z; Rennaker RL; Kilgard MP; Hays SA
    Neurorehabil Neural Repair; 2020 Mar; 34(3):200-209. PubMed ID: 31969052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repetitive Intermittent Hypoxia and Locomotor Training Enhances Walking Function in Incomplete Spinal Cord Injury Subjects: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial.
    Navarrete-Opazo A; Alcayaga J; Sepúlveda O; Rojas E; Astudillo C
    J Neurotrauma; 2017 May; 34(9):1803-1812. PubMed ID: 27329506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice.
    Pan L; Tan B; Tang W; Luo M; Liu Y; Yu L; Yin Y
    Behav Brain Res; 2021 May; 405():113197. PubMed ID: 33621609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nerve Transfers to Restore Upper Extremity Function in Cervical Spinal Cord Injury: Update and Preliminary Outcomes.
    Fox IK; Davidge KM; Novak CB; Hoben G; Kahn LC; Juknis N; Ruvinskaya R; Mackinnon SE
    Plast Reconstr Surg; 2015 Oct; 136(4):780-792. PubMed ID: 26397252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.