These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33932456)

  • 1. Characterization of neuronal viability and network activity under microfluidic flow.
    Herzog N; Johnstone A; Bellamy T; Russell N
    J Neurosci Methods; 2021 Jul; 358():109200. PubMed ID: 33932456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of in vitro neural functional connectivity on a neurofluidic device.
    Shen X; Wu J; Wang Z; Chen T
    Electrophoresis; 2019 Nov; 40(22):2996-3004. PubMed ID: 31556965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of long-term primary neuronal cultures and network activity through the integration of reversibly bonded microbioreactors and MEA substrates.
    Biffi E; Menegon A; Piraino F; Pedrocchi A; Fiore GB; Rasponi M
    Biotechnol Bioeng; 2012 Jan; 109(1):166-75. PubMed ID: 21858786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.
    Pearce TM; Wilson JA; Oakes SG; Chiu SY; Williams JC
    Lab Chip; 2005 Jan; 5(1):97-101. PubMed ID: 15616746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous membrane-sealed microfluidic devices for improved cell viability.
    Masand SN; Mignone L; Zahn JD; Shreiber DI
    Biomed Microdevices; 2011 Dec; 13(6):955-61. PubMed ID: 21710369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preliminary study on the construction of three-dimensional hippocampal neural network by using microfluidic technology
    Kong X; Tian S; Chen T; Huang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Feb; 33(2):239-242. PubMed ID: 30739423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.
    Millet LJ; Stewart ME; Nuzzo RG; Gillette MU
    Lab Chip; 2010 Jun; 10(12):1525-35. PubMed ID: 20390196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.
    Mauleon G; Fall CP; Eddington DT
    PLoS One; 2012; 7(8):e43309. PubMed ID: 22905255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
    Kang G; Lee JH; Lee CS; Nam Y
    Lab Chip; 2009 Nov; 9(22):3236-42. PubMed ID: 19865730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Bi-Layer Platform to Study Functional Interaction between Co-Cultured Neural Networks with Unidirectional Synaptic Connectivity.
    Pigareva Y; Gladkov A; Kolpakov V; Bukatin A; Li S; Kazantsev VB; Mukhina I; Pimashkin A
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip for the detection of biological toxic effects of polychlorinated biphenyls on neuronal cells.
    Park S; Choi JW; Kim YK
    J Biomed Nanotechnol; 2013 May; 9(5):880-5. PubMed ID: 23802419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed microfluidic chip for cell co-culture.
    Watson C; Liu C; Ansari A; Miranda HC; Somoza RA; Senyo SE
    Analyst; 2022 Nov; 147(23):5409-5418. PubMed ID: 36300548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a microfluidic device for diffusion coefficient determination of high molecular weight solutes detectable in the visible spectrum.
    Binda L; Bolado M; D'Onofrio A; Freytes VM
    Eur Phys J E Soft Matter; 2022 Jun; 45(6):56. PubMed ID: 35751705
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.