BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33932866)

  • 1. Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach.
    Serlin HK; Fox EA
    Auton Neurosci; 2021 Jul; 233():102811. PubMed ID: 33932866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abdominal vagotomy reveals majority of small intestinal mucosal afferents labeled in na
    Serlin HK; Fox EA
    J Comp Neurol; 2020 Apr; 528(5):816-839. PubMed ID: 31618460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety.
    Fox EA; Phillips RJ; Baronowsky EA; Byerly MS; Jones S; Powley TL
    J Neurosci; 2001 Nov; 21(21):8602-15. PubMed ID: 11606648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the distribution of vagal afferent projections from different peripheral organs to the nucleus of the solitary tract in rats.
    Bassi JK; Connelly AA; Butler AG; Liu Y; Ghanbari A; Farmer DGS; Jenkins MW; Melo MR; McDougall SJ; Allen AM
    J Comp Neurol; 2022 Dec; 530(17):3072-3103. PubMed ID: 35988033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture.
    Powley TL; Spaulding RA; Haglof SA
    J Comp Neurol; 2011 Mar; 519(4):644-60. PubMed ID: 21246548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes.
    Czaja K; Ritter RC; Burns GA
    Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.
    Egerod KL; Petersen N; Timshel PN; Rekling JC; Wang Y; Liu Q; Schwartz TW; Gautron L
    Mol Metab; 2018 Jun; 12():62-75. PubMed ID: 29673577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
    Biddinger JE; Fox EA
    J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship of Met-enkephalin-like immunoreactivity to vagal afferents and motor dendrites in the nucleus of the solitary tract: a light and electron microscopic dual labeling study.
    Velley L; Milner TA; Chan J; Morrison SF; Pickel VM
    Brain Res; 1991 Jun; 550(2):298-312. PubMed ID: 1715806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat.
    Berthoud HR; Jedrzejewska A; Powley TL
    J Comp Neurol; 1990 Nov; 301(1):65-79. PubMed ID: 1706359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal innervation of the rat duodenum.
    Zhang X; Renehan WE; Fogel R
    J Auton Nerv Syst; 2000 Feb; 79(1):8-18. PubMed ID: 10683501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical coding and central projections of gastric vagal afferent neurons.
    Young RL; Cooper NJ; Blackshaw LA
    Neurogastroenterol Motil; 2008 Jun; 20(6):708-18. PubMed ID: 18266614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of vesicular glutamate transporters by vagal afferent terminals in rat nucleus of the solitary tract: projections from the heart preferentially express vesicular glutamate transporter 1.
    Corbett EK; Sinfield JK; McWilliam PN; Deuchars J; Batten TF
    Neuroscience; 2005; 135(1):133-45. PubMed ID: 16084661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing.
    Berthoud HR; Kressel M; Raybould HE; Neuhuber WL
    Anat Embryol (Berl); 1995 Mar; 191(3):203-12. PubMed ID: 7771683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vagal afferents innervating the gastrointestinal tract and CCKA-receptor immunoreactivity.
    Patterson LM; Zheng H; Berthoud HR
    Anat Rec; 2002 Jan; 266(1):10-20. PubMed ID: 11748567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse.
    Gautron L; Sakata I; Udit S; Zigman JM; Wood JN; Elmquist JK
    J Comp Neurol; 2011 Oct; 519(15):3085-101. PubMed ID: 21618224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.