These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33932886)
1. Recyclable laccase by coprecipitation with aciduric Cu-based MOFs for bisphenol A degradation in an aqueous environment. Yuan Y; Cai W; Xu J; Cheng J; Du KS Colloids Surf B Biointerfaces; 2021 Aug; 204():111792. PubMed ID: 33932886 [TBL] [Abstract][Full Text] [Related]
2. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. Birhanlı E; Noma SAA; Boran F; Ulu A; Yeşilada Ö; Ateş B Chemosphere; 2022 Apr; 292():133382. PubMed ID: 34954196 [TBL] [Abstract][Full Text] [Related]
3. Improved stability and promoted activity of laccase by One-Pot encapsulation with Cu (PABA) nanoarchitectonics and its application for removal of Azo dyes. Jiang S; Ren D; Wang Z; Zhang S; Zhang X; Chen W Ecotoxicol Environ Saf; 2022 Apr; 234():113366. PubMed ID: 35272195 [TBL] [Abstract][Full Text] [Related]
4. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Olajuyigbe FM; Adetuyi OY; Fatokun CO Int J Biol Macromol; 2019 Mar; 125():856-864. PubMed ID: 30557644 [TBL] [Abstract][Full Text] [Related]
5. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Lin J; Liu Y; Chen S; Le X; Zhou X; Zhao Z; Ou Y; Yang J Int J Biol Macromol; 2016 Mar; 84():189-99. PubMed ID: 26691384 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. Du M; Liu J; Wang Q; Wang F; Bi L; Ma C; Song M; Jiang G J Environ Sci (China); 2025 Jan; 147():74-82. PubMed ID: 39003085 [TBL] [Abstract][Full Text] [Related]
7. Co-Immobilization of Laccase and Mediator into Fe-Doped ZIF-8 Significantly Enhances the Degradation of Organic Pollutants. Li Z; Shi Q; Dong X; Sun Y Molecules; 2024 Jan; 29(2):. PubMed ID: 38257220 [TBL] [Abstract][Full Text] [Related]
8. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. Zhang R; Wang L; Han J; Wu J; Li C; Ni L; Wang Y J Hazard Mater; 2020 Feb; 383():121130. PubMed ID: 31518815 [TBL] [Abstract][Full Text] [Related]
9. Recent environmental applications of and development prospects for immobilized laccase: a review. Ren D; Wang Z; Jiang S; Yu H; Zhang S; Zhang X Biotechnol Genet Eng Rev; 2020 Oct; 36(2):81-131. PubMed ID: 33435852 [TBL] [Abstract][Full Text] [Related]
10. A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol A removal and phytotoxicity evaluation. Ademakinwa AN J Hazard Mater; 2021 Oct; 419():126480. PubMed ID: 34218192 [TBL] [Abstract][Full Text] [Related]
11. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Lassouane F; Aït-Amar H; Amrani S; Rodriguez-Couto S Bioresour Technol; 2019 Jan; 271():360-367. PubMed ID: 30293031 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Zeng S; Zhao J; Xia L Bioprocess Biosyst Eng; 2017 Aug; 40(8):1237-1245. PubMed ID: 28536853 [TBL] [Abstract][Full Text] [Related]
13. High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica. Piao M; Zou D; Ren X; Gao S; Qin C; Piao Y Enzyme Microb Technol; 2019 Jul; 126():1-8. PubMed ID: 31000159 [TBL] [Abstract][Full Text] [Related]
14. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Kimura Y; Takahashi A; Kashiwada A; Yamada K Environ Technol; 2016; 37(14):1733-44. PubMed ID: 26652753 [TBL] [Abstract][Full Text] [Related]
15. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review. Bilal M; Iqbal HMN; Barceló D Sci Total Environ; 2019 Nov; 689():160-177. PubMed ID: 31271985 [TBL] [Abstract][Full Text] [Related]
16. Succinic anhydride-based chemical modification making laccase@Cu Yang H; He P; Yin Y; Mao Z; Zhang J; Zhong C; Xie T; Wang A Bioprocess Biosyst Eng; 2021 Oct; 44(10):2061-2073. PubMed ID: 33983484 [TBL] [Abstract][Full Text] [Related]
17. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. Li X; Wu Z; Tao X; Li R; Tian D; Liu X J Hazard Mater; 2022 Sep; 438():129525. PubMed ID: 35816800 [TBL] [Abstract][Full Text] [Related]
18. Encapsulated laccase in bimetallic Cu/Zn ZIFs as stable and reusable biocatalyst for decolorization of dye wastewater. Yang X; Zhao J; Cavaco-Paulo A; Su J; Wang H Int J Biol Macromol; 2023 Apr; 233():123410. PubMed ID: 36709822 [TBL] [Abstract][Full Text] [Related]
19. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Fu M; Xing J; Ge Z Sci Total Environ; 2019 Feb; 651(Pt 2):2857-2865. PubMed ID: 30463138 [TBL] [Abstract][Full Text] [Related]
20. Bisphenol A degradation in water by ligninolytic enzymes. Gassara F; Brar SK; Verma M; Tyagi RD Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]