BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 33932935)

  • 1. Performance assessment of the metastatic spinal tumor frailty index using machine learning algorithms: limitations and future directions.
    Massaad E; Williams N; Hadzipasic M; Patel SS; Fourman MS; Kiapour A; Schoenfeld AJ; Shankar GM; Shin JH
    Neurosurg Focus; 2021 May; 50(5):E5. PubMed ID: 33932935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Metastatic Spinal Tumor Frailty Index (MSTFI) Using a Nationwide Database and Its Association with Inpatient Morbidity, Mortality, and Length of Stay After Spine Surgery.
    De la Garza Ramos R; Goodwin CR; Jain A; Abu-Bonsrah N; Fisher CG; Bettegowda C; Sciubba DM
    World Neurosurg; 2016 Nov; 95():548-555.e4. PubMed ID: 27544340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcopenia, but not frailty, predicts early mortality and adverse events after emergent surgery for metastatic disease of the spine.
    Bourassa-Moreau É; Versteeg A; Moskven E; Charest-Morin R; Flexman A; Ailon T; Dalkilic T; Fisher C; Dea N; Boyd M; Paquette S; Kwon B; Dvorak M; Street J
    Spine J; 2020 Jan; 20(1):22-31. PubMed ID: 31479782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Frailty Indices and Charlson Comorbidity Index for Predicting Adverse Outcomes in Patients Undergoing Surgery for Spine Metastases: A National Database Analysis.
    Elsamadicy AA; Havlik JL; Reeves B; Sherman J; Koo AB; Pennington Z; Hersh AM; Sandhu MRS; Kolb L; Larry Lo SF; Shin JH; Mendel E; Sciubba DM
    World Neurosurg; 2022 Aug; 164():e1058-e1070. PubMed ID: 35644519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of frailty metrics and the Charlson Comorbidity Index for predicting adverse outcomes in patients undergoing surgery for spine metastases.
    Hersh AM; Pennington Z; Hung B; Patel J; Goldsborough E; Schilling A; Feghali J; Antar A; Srivastava S; Botros D; Elsamadicy AA; Lo SL; Sciubba DM
    J Neurosurg Spine; 2022 May; 36(5):849-857. PubMed ID: 34826820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis.
    Cui Y; Shi X; Qin Y; Wang Q; Cao X; Che X; Pan Y; Wang B; Lei M; Liu Y
    Int J Surg; 2024 May; 110(5):2738-2756. PubMed ID: 38376838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.
    Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA
    Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of frailty in predictive modeling of short-term outcomes in the surgical management of metastatic tumors to the spine.
    Bakhsheshian J; Shahrestani S; Buser Z; Hah R; Hsieh PC; Liu JC; Wang JC
    Spine J; 2022 Apr; 22(4):605-615. PubMed ID: 34848345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform.
    Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A
    JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Machine Learning Model to Identify Patients Before Surgery at High Risk for Postoperative Adverse Events.
    Mahajan A; Esper S; Oo TH; McKibben J; Garver M; Artman J; Klahre C; Ryan J; Sadhasivam S; Holder-Murray J; Marroquin OC
    JAMA Netw Open; 2023 Jul; 6(7):e2322285. PubMed ID: 37418262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of additional hospital days in patients undergoing cervical spine surgery with machine learning methods.
    Zhang B; Huang S; Zhou C; Zhu J; Chen T; Feng S; Huang C; Wang Z; Wu S; Liu C; Zhan X
    Comput Assist Surg (Abingdon); 2024 Dec; 29(1):2345066. PubMed ID: 38860617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a web-based artificial intelligence prediction model to assess massive intraoperative blood loss for metastatic spinal disease using machine learning techniques.
    Shi X; Cui Y; Wang S; Pan Y; Wang B; Lei M
    Spine J; 2024 Jan; 24(1):146-160. PubMed ID: 37704048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preoperative Risk Stratification in Spine Tumor Surgery: A Comparison of the Modified Charlson Index, Frailty Index, and ASA Score.
    Lakomkin N; Zuckerman SL; Stannard B; Montejo J; Sussman ES; Virojanapa J; Kuzmik G; Goz V; Hadjipanayis CG; Cheng JS
    Spine (Phila Pa 1976); 2019 Jul; 44(13):E782-E787. PubMed ID: 31205174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frailty and sarcopenia do not predict adverse events in an elderly population undergoing non-complex primary elective surgery for degenerative conditions of the lumbar spine.
    Charest-Morin R; Street J; Zhang H; Roughead T; Ailon T; Boyd M; Dvorak M; Kwon B; Paquette S; Dea N; Fisher CG; Flexman AM
    Spine J; 2018 Feb; 18(2):245-254. PubMed ID: 28709946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study.
    Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M
    PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease.
    Karhade AV; Ahmed AK; Pennington Z; Chara A; Schilling A; Thio QCBS; Ogink PT; Sciubba DM; Schwab JH
    Spine J; 2020 Jan; 20(1):14-21. PubMed ID: 31505303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does the SORG algorithm generalize to a contemporary cohort of patients with spinal metastases on external validation?
    Bongers MER; Karhade AV; Villavieja J; Groot OQ; Bilsky MH; Laufer I; Schwab JH
    Spine J; 2020 Oct; 20(10):1646-1652. PubMed ID: 32428674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision medicine for traumatic cervical spinal cord injuries: accessible and interpretable machine learning models to predict individualized in-hospital outcomes.
    Karabacak M; Margetis K
    Spine J; 2023 Dec; 23(12):1750-1763. PubMed ID: 37619871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.
    Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z
    Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.