These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 33933457)
1. Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis. Srivastav MK; Agarwal N; Poonia P; Natarajan K J Biol Chem; 2021 Jul; 297(1):100727. PubMed ID: 33933457 [TBL] [Abstract][Full Text] [Related]
2. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. Singh RP; Prasad HK; Sinha I; Agarwal N; Natarajan K J Biol Chem; 2011 Jul; 286(28):25154-70. PubMed ID: 21592964 [TBL] [Abstract][Full Text] [Related]
3. Multiple Evolutionarily Conserved Domains of Cap2 Are Required for Promoter Recruitment and Iron Homeostasis Gene Regulation. Srivastav MK; Agarwal N; Natarajan K mSphere; 2018 Aug; 3(4):. PubMed ID: 30068562 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Sellam A; Askew C; Epp E; Lavoie H; Whiteway M; Nantel A Mol Biol Cell; 2009 May; 20(9):2389-400. PubMed ID: 19279142 [TBL] [Abstract][Full Text] [Related]
5. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Baek YU; Li M; Davis DA Eukaryot Cell; 2008 Jul; 7(7):1168-79. PubMed ID: 18503007 [TBL] [Abstract][Full Text] [Related]
6. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Chen C; Pande K; French SD; Tuch BB; Noble SM Cell Host Microbe; 2011 Aug; 10(2):118-35. PubMed ID: 21843869 [TBL] [Abstract][Full Text] [Related]
7. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. Chen C; Noble SM PLoS Pathog; 2012; 8(11):e1002956. PubMed ID: 23133381 [TBL] [Abstract][Full Text] [Related]
8. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. Hsu PC; Yang CY; Lan CY Eukaryot Cell; 2011 Feb; 10(2):207-25. PubMed ID: 21131439 [TBL] [Abstract][Full Text] [Related]
9. Independent recruitment of mediator and SAGA by the activator Met4. Leroy C; Cormier L; Kuras L Mol Cell Biol; 2006 Apr; 26(8):3149-63. PubMed ID: 16581789 [TBL] [Abstract][Full Text] [Related]
10. Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Law MJ; Ciccaglione K Genetics; 2015 Feb; 199(2):435-53. PubMed ID: 25467068 [TBL] [Abstract][Full Text] [Related]
11. Iron-responsive chromatin remodelling and MAPK signalling enhance adhesion in Candida albicans. Puri S; Lai WK; Rizzo JM; Buck MJ; Edgerton M Mol Microbiol; 2014 Jul; 93(2):291-305. PubMed ID: 24889932 [TBL] [Abstract][Full Text] [Related]
12. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Yu Y; Eriksson P; Stillman DJ Mol Cell Biol; 2000 Apr; 20(7):2350-7. PubMed ID: 10713159 [TBL] [Abstract][Full Text] [Related]
13. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Bhaumik SR; Green MR Mol Cell Biol; 2002 Nov; 22(21):7365-71. PubMed ID: 12370284 [TBL] [Abstract][Full Text] [Related]
14. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Chia DJ; Young JJ; Mertens AR; Rotwein P Mol Endocrinol; 2010 Apr; 24(4):779-89. PubMed ID: 20160126 [TBL] [Abstract][Full Text] [Related]
15. Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. Ricci AR; Genereaux J; Brandl CJ Mol Cell Biol; 2002 Jun; 22(12):4033-42. PubMed ID: 12024017 [TBL] [Abstract][Full Text] [Related]
16. Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Hsu PC; Chao CC; Yang CY; Ye YL; Liu FC; Chuang YJ; Lan CY Eukaryot Cell; 2013 Jun; 12(6):804-15. PubMed ID: 23543673 [TBL] [Abstract][Full Text] [Related]
17. Strain variation in the Xiong L; Goerlich K; Do E; Mitchell AP mSphere; 2024 Jul; 9(7):e0037224. PubMed ID: 38980069 [TBL] [Abstract][Full Text] [Related]
18. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Larschan E; Winston F Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989 [TBL] [Abstract][Full Text] [Related]
19. Bypass of Dfi1 Regulation of Candida albicans Invasive Filamentation by Iron Limitation. Junier A; Weeks A; Alcaraz Y; Kumamoto CA mSphere; 2022 Feb; 7(1):e0077921. PubMed ID: 35107339 [TBL] [Abstract][Full Text] [Related]