These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 33933533)
1. Functional characterization of four TIR domain-containing adaptors, MyD88, TRIF, MAL, and SARM in mandarin fish Siniperca chuatsi. Wang KL; Chen SN; Li L; Huo HJ; Nie P Dev Comp Immunol; 2021 Sep; 122():104110. PubMed ID: 33933533 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the TIR domain-containing adaptors in humans: swinging between constraint and adaptation. Fornarino S; Laval G; Barreiro LB; Manry J; Vasseur E; Quintana-Murci L Mol Biol Evol; 2011 Nov; 28(11):3087-97. PubMed ID: 21659570 [TBL] [Abstract][Full Text] [Related]
4. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Carty M; Goodbody R; Schröder M; Stack J; Moynagh PN; Bowie AG Nat Immunol; 2006 Oct; 7(10):1074-81. PubMed ID: 16964262 [TBL] [Abstract][Full Text] [Related]
5. The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. McGettrick AF; O'Neill LA Mol Immunol; 2004 Jul; 41(6-7):577-82. PubMed ID: 15219996 [TBL] [Abstract][Full Text] [Related]
6. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. O'Neill LA; Bowie AG Nat Rev Immunol; 2007 May; 7(5):353-64. PubMed ID: 17457343 [TBL] [Abstract][Full Text] [Related]
7. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. Peng J; Yuan Q; Lin B; Panneerselvam P; Wang X; Luan XL; Lim SK; Leung BP; Ho B; Ding JL Eur J Immunol; 2010 Jun; 40(6):1738-47. PubMed ID: 20306472 [TBL] [Abstract][Full Text] [Related]
8. TIR domain-containing adaptors define the specificity of TLR signaling. Yamamoto M; Takeda K; Akira S Mol Immunol; 2004 Feb; 40(12):861-8. PubMed ID: 14698224 [TBL] [Abstract][Full Text] [Related]
9. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi. Wang KL; Chen SN; Huo HJ; Nie P Dev Comp Immunol; 2021 Aug; 121():104100. PubMed ID: 33862097 [TBL] [Abstract][Full Text] [Related]
10. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-beta-dependent pathways and increases expression of negative regulators of TLR signaling. Piao W; Song C; Chen H; Diaz MA; Wahl LM; Fitzgerald KA; Li L; Medvedev AE J Leukoc Biol; 2009 Oct; 86(4):863-75. PubMed ID: 19656901 [TBL] [Abstract][Full Text] [Related]
11. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. Yamamoto M; Sato S; Mori K; Hoshino K; Takeuchi O; Takeda K; Akira S J Immunol; 2002 Dec; 169(12):6668-72. PubMed ID: 12471095 [TBL] [Abstract][Full Text] [Related]
12. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Watters TM; Kenny EF; O'Neill LA Immunol Cell Biol; 2007; 85(6):411-9. PubMed ID: 17667936 [TBL] [Abstract][Full Text] [Related]
13. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. Stack J; Haga IR; Schröder M; Bartlett NW; Maloney G; Reading PC; Fitzgerald KA; Smith GL; Bowie AG J Exp Med; 2005 Mar; 201(6):1007-18. PubMed ID: 15767367 [TBL] [Abstract][Full Text] [Related]
14. TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88. Ohnishi H; Tochio H; Kato Z; Kawamoto N; Kimura T; Kubota K; Yamamoto T; Funasaka T; Nakano H; Wong RW; Shirakawa M; Kondo N PLoS One; 2012; 7(6):e38423. PubMed ID: 22685567 [TBL] [Abstract][Full Text] [Related]
15. SARM suppresses TRIF, TRAF3, and IRF3/7 mediated antiviral signaling in large yellow croaker Zhang JX; Li Y; Tang JC; Li KQ; Shen JJ; Liu C; Jiang YH; Zhang ZP; Wang YL; Zou PF Front Immunol; 2022; 13():1021443. PubMed ID: 36713393 [TBL] [Abstract][Full Text] [Related]
16. TLR21 is involved in the NF-κB and IFN-β pathways in largemouth bass (Micropterus salmoides) and interacts with TRIF but not with the Myd88 adaptor. Gao F; Dong J; Li J; Zhu Z; Zhang H; Sun C; Ye X Fish Shellfish Immunol; 2024 Aug; 151():109734. PubMed ID: 38950759 [TBL] [Abstract][Full Text] [Related]
17. Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Andreakos E; Sacre SM; Smith C; Lundberg A; Kiriakidis S; Stonehouse T; Monaco C; Feldmann M; Foxwell BM Blood; 2004 Mar; 103(6):2229-37. PubMed ID: 14630816 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Ohnishi H; Tochio H; Kato Z; Orii KE; Li A; Kimura T; Hiroaki H; Kondo N; Shirakawa M Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10260-5. PubMed ID: 19506249 [TBL] [Abstract][Full Text] [Related]
19. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Fitzgerald KA; Palsson-McDermott EM; Bowie AG; Jefferies CA; Mansell AS; Brady G; Brint E; Dunne A; Gray P; Harte MT; McMurray D; Smith DE; Sims JE; Bird TA; O'Neill LA Nature; 2001 Sep; 413(6851):78-83. PubMed ID: 11544529 [TBL] [Abstract][Full Text] [Related]
20. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. Nilsen NJ; Vladimer GI; Stenvik J; Orning MP; Zeid-Kilani MV; Bugge M; Bergstroem B; Conlon J; Husebye H; Hise AG; Fitzgerald KA; Espevik T; Lien E J Biol Chem; 2015 Feb; 290(6):3209-22. PubMed ID: 25505250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]