BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33933542)

  • 21. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering.
    Rathan S; Dejob L; Schipani R; Haffner B; Möbius ME; Kelly DJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1801501. PubMed ID: 30624015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Review of Three-Dimensional Printing in Tissue Engineering.
    Sears NA; Seshadri DR; Dhavalikar PS; Cosgriff-Hernandez E
    Tissue Eng Part B Rev; 2016 Aug; 22(4):298-310. PubMed ID: 26857350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting.
    Abaci A; Guvendiren M
    Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing vascular supportive albumen-rich composite bioink for organ 3D printing.
    Liu S; Zhang H; Hu Q; Shen Z; Rana D; Ramalingam M
    J Mech Behav Biomed Mater; 2020 Apr; 104():103642. PubMed ID: 32174400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration.
    Olmos-Juste R; Alonso-Lerma B; Pérez-Jiménez R; Gabilondo N; Eceiza A
    Carbohydr Polym; 2021 Jul; 264():118026. PubMed ID: 33910718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Review on Multicomponent Hydrogel Bioinks Based on Natural Biomaterials for Bioprinting 3D Liver Tissues.
    Kim D; Kim M; Lee J; Jang J
    Front Bioeng Biotechnol; 2022; 10():764682. PubMed ID: 35237569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Algal polysaccharides for 3D printing: A review.
    Mandal S; Nagi GK; Corcoran AA; Agrawal R; Dubey M; Hunt RW
    Carbohydr Polym; 2023 Jan; 300():120267. PubMed ID: 36372490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels.
    Chen Y; Xiong X; Liu X; Cui R; Wang C; Zhao G; Zhi W; Lu M; Duan K; Weng J; Qu S; Ge J
    J Mater Chem B; 2020 Jul; 8(25):5500-5514. PubMed ID: 32484194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advancing the field of 3D biomaterial printing.
    Jakus AE; Rutz AL; Shah RN
    Biomed Mater; 2016 Jan; 11(1):014102. PubMed ID: 26752507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
    Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK
    Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.
    Kim BS; Kwon YW; Kong JS; Park GT; Gao G; Han W; Kim MB; Lee H; Kim JH; Cho DW
    Biomaterials; 2018 Jun; 168():38-53. PubMed ID: 29614431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering.
    Yang X; Lu Z; Wu H; Li W; Zheng L; Zhao J
    Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():195-201. PubMed ID: 29208279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering.
    Lafuente-Merchan M; Ruiz-Alonso S; Espona-Noguera A; Galvez-Martin P; López-Ruiz E; Marchal JA; López-Donaire ML; Zabala A; Ciriza J; Saenz-Del-Burgo L; Pedraz JL
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112160. PubMed ID: 34082965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.