These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33933641)

  • 1. Moxifloxacin-loaded in situ synthesized Bioceramic/Poly(L-lactide-co-ε-caprolactone) composite scaffolds for treatment of osteomyelitis and orthopedic regeneration.
    Radwan NH; Nasr M; Ishak RAH; Awad GAS
    Int J Pharm; 2021 Jun; 602():120662. PubMed ID: 33933641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: Fabrication, characterization, and in vitro-in vivo evaluation.
    Radwan NH; Nasr M; Ishak RAH; Abdeltawab NF; Awad GAS
    Carbohydr Polym; 2020 Sep; 244():116482. PubMed ID: 32536391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(lactide-co-ε-caprolactone) scaffold promotes equivalent tissue integration and supports skin grafts compared to a predicate collagen scaffold.
    Ruppert DS; Mohammed MM; Ibrahim MM; Bachtiar EO; Erning K; Ansari K; Everitt JI; Brown D; Klitzman B; Koshut W; Gall K; Levinson H
    Wound Repair Regen; 2021 Nov; 29(6):1035-1050. PubMed ID: 34129714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration.
    Chen Y; Jia Z; Shafiq M; Xie X; Xiao X; Castro R; Rodrigues J; Wu J; Zhou G; Mo X
    Colloids Surf B Biointerfaces; 2021 May; 201():111637. PubMed ID: 33639507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro study of composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis.
    Ahola N; Männistö N; Veiranto M; Karp M; Rich J; Efimov A; Seppälä J; Kellomäki M
    Biomatter; 2013; 3(2):. PubMed ID: 23507926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long term efficacy and fate of a right ventricular outflow tract replacement using an elastomeric cardiac patch consisting of caprolactone and D,L-lactide copolymers.
    Fujimoto KL; Yamawaki-Ogata A; Uto K; Usui A; Narita Y; Ebara M
    Acta Biomater; 2021 Mar; 123():222-229. PubMed ID: 33476828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable L-lysine-modified amino black phosphorus/poly(l-lactide-coε-caprolactone) nanofibers with enhancements in hydrophilicity, shape recovery and osteodifferentiation properties.
    Wang J; Wang J; Qiu S; Chen W; Cheng L; Du W; Wang J; Han L; Song L; Hu Y
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112209. PubMed ID: 34814101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds.
    Oliveira NK; Salles THC; Pedroni AC; Miguita L; D'Ávila MA; Marques MM; Deboni MCZ
    Dent Mater; 2019 Dec; 35(12):1740-1749. PubMed ID: 31543375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing.
    Xu X; Wang X; Qin C; Khan AUR; Zhang W; Mo X
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111557. PubMed ID: 33434880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.