These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33933788)

  • 1. Axial spreading of droplet impact on ridged superhydrophobic surfaces.
    Hu Z; Zhang X; Gao S; Yuan Z; Lin Y; Chu F; Wu X
    J Colloid Interface Sci; 2021 Oct; 599():130-139. PubMed ID: 33933788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge.
    Chen X; Wang YF; Yang YR; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold.
    Khanzadeh Borjak S; Rafee R; Valipour MS
    Langmuir; 2020 Nov; 36(45):13498-13508. PubMed ID: 33146013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of substrate elasticity on droplet impact dynamics.
    Alizadeh A; Bahadur V; Shang W; Zhu Y; Buckley D; Dhinojwala A; Sohal M
    Langmuir; 2013 Apr; 29(14):4520-4. PubMed ID: 23398129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact time of impacting droplets on a superhydrophobic surface with tunable curvature and groove orientation.
    Guo C; Liu L; Liu C
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34814124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water droplet impact on elastic superhydrophobic surfaces.
    Weisensee PB; Tian J; Miljkovic N; King WP
    Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size.
    Wang Y; Wang Y; Wang S
    J Colloid Interface Sci; 2020 Oct; 578():207-217. PubMed ID: 32531551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact Time of a Droplet Off-Centered Impacting a Superhydrophobic Cylinder.
    Zhang LZ; Chen X; Wang YF; Yang YR; Zheng SF; Lee DJ; Wang XD
    Langmuir; 2023 Nov; 39(45):16023-16034. PubMed ID: 37916520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays.
    Aria AI; Gharib M
    Langmuir; 2014 Jun; 30(23):6780-90. PubMed ID: 24866696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singular jets during droplet impact on superhydrophobic surfaces.
    Peng X; Wang T; Jia F; Sun K; Li Z; Che Z
    J Colloid Interface Sci; 2023 Dec; 651():870-882. PubMed ID: 37573733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.
    Mohammadi M; Tembely M; Dolatabadi A
    Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact Dynamics of a Droplet on Superhydrophobic Cylinders Structured with a Macro Ridge.
    Zhang LZ; Chen X; Yang YR; Wang XD
    Langmuir; 2023 May; 39(18):6375-6386. PubMed ID: 37092810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drop Impact on a Superhydrophilic Spot Surrounded by a Superhydrophobic Surface.
    Satpathi NS; Malik L; Ramasamy AS; Sen AK
    Langmuir; 2021 Dec; 37(48):14195-14204. PubMed ID: 34802243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jet or wet? Droplet post-impact regimes on concave contours.
    Agrawal S; Khurana G; Samanta D; Dhar P
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):90. PubMed ID: 37782381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.