These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 33933841)
1. Production of high-energy neutrons by interaction of a deuteron beam with matter. Sun W; Qiu W; Su J Appl Radiat Isot; 2021 Aug; 174():109752. PubMed ID: 33933841 [TBL] [Abstract][Full Text] [Related]
2. Dosimetric properties of neutrons from 21-MeV deuteron bombardment of a deuterium gas target. Weaver KA; Eenmaa J; Bichsel H; Wootton P Med Phys; 1979; 6(3):193-6. PubMed ID: 112370 [TBL] [Abstract][Full Text] [Related]
3. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362 [TBL] [Abstract][Full Text] [Related]
5. Radiological concerns in operation of intense low-energy deuteron beams. Weissman L; Berkovits D; Grof Y; Ben-Dov Y Health Phys; 2008 Dec; 95(6):754-60. PubMed ID: 19001902 [TBL] [Abstract][Full Text] [Related]
6. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics. Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249 [TBL] [Abstract][Full Text] [Related]
7. Stripping-theory analysis of thick-target neutron production for D + Be. August LS; Attix FH; Herling GH; Shapiro P; Theus RB Phys Med Biol; 1976 Nov; 21(6):931-40. PubMed ID: 1019232 [TBL] [Abstract][Full Text] [Related]
8. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach. Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575 [TBL] [Abstract][Full Text] [Related]
9. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412 [TBL] [Abstract][Full Text] [Related]
10. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum. Takada M; Mihara E; Sasaki M; Nakamura T; Honma T; Kono K; Fujitaka K Radiat Prot Dosimetry; 2004; 110(1-4):601-6. PubMed ID: 15353715 [TBL] [Abstract][Full Text] [Related]
11. Time-resolved characteristics of deuteron-beam generated by plasma focus discharge. Lim LK; Yap SL; Bradley DA PLoS One; 2018; 13(1):e0188009. PubMed ID: 29309425 [TBL] [Abstract][Full Text] [Related]
12. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the Protein Data Bank. Zabihi A; Incerti S; Francis Z; Forozani G; Semsarha F; Moslehi A; Rezaeian P; Bernal MA Phys Rev E; 2019 May; 99(5-1):052404. PubMed ID: 31212425 [TBL] [Abstract][Full Text] [Related]
13. Neutron spectra from deuteron and proton bombardment of thick lithium targets: potential for neutron therapy. Nelson CE; Purser FO; Behren PV; Newson HW Phys Med Biol; 1978 Jan; 23(1):39-46. PubMed ID: 416447 [TBL] [Abstract][Full Text] [Related]
14. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE. Schneider U; Hälg RA; Baiocco G; Lomax T Phys Med Biol; 2016 Aug; 61(16):6231-42. PubMed ID: 27486057 [TBL] [Abstract][Full Text] [Related]
15. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam? Ding GX; Duzenli C; Kalach NI Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221 [TBL] [Abstract][Full Text] [Related]
17. Influence of ridge filter material on the beam efficiency and secondary neutron production in a proton therapy system. Riazi Z; Afarideh H; Sadighi-Bonabi R Z Med Phys; 2012 Sep; 22(3):231-40. PubMed ID: 22739322 [TBL] [Abstract][Full Text] [Related]
19. Explosion characteristics of intense femtosecond-laser-driven water droplets. Schnürer M; Hilscher D; Jahnke U; Ter-Avetisyan S; Busch S; Kalachnikov M; Stiel H; Nickles PV; Sandner W Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056401. PubMed ID: 15600759 [TBL] [Abstract][Full Text] [Related]
20. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron. Maughan RL; Yudelev M Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]