These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33933876)
1. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Wu X; Tian H; Li L; Guan C; Zhang Z Environ Pollut; 2021 Sep; 285():117218. PubMed ID: 33933876 [TBL] [Abstract][Full Text] [Related]
2. NPs-Ca promotes Cd accumulation and enhances Cd tolerance of rapeseed shoots by affecting Cd transfer and Cd fixation in pectin. Zhu Z; Tian H; Tang X; Li J; Zhang Z; Chai G; Wu X Chemosphere; 2023 Nov; 341():140001. PubMed ID: 37659510 [TBL] [Abstract][Full Text] [Related]
3. Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Wang L; Li R; Yan X; Liang X; Sun Y; Xu Y Ecotoxicol Environ Saf; 2020 May; 194():110369. PubMed ID: 32135380 [TBL] [Abstract][Full Text] [Related]
4. Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Wu X; Song H; Guan C; Zhang Z Environ Pollut; 2020 Aug; 263(Pt B):114546. PubMed ID: 32311624 [TBL] [Abstract][Full Text] [Related]
5. Sodium Hydrosulfide Mitigates Cadmium Toxicity by Promoting Cadmium Retention and Inhibiting Its Translocation from Roots to Shoots in Brassica napus. Yu Y; Zhou X; Zhu Z; Zhou K J Agric Food Chem; 2019 Jan; 67(1):433-440. PubMed ID: 30569699 [TBL] [Abstract][Full Text] [Related]
6. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Zhang ZH; Zhou T; Tang TJ; Song HX; Guan CY; Huang JY; Hua YP J Exp Bot; 2019 Oct; 70(19):5437-5455. PubMed ID: 31232451 [TBL] [Abstract][Full Text] [Related]
7. Physiological and biochemical characteristics of high and low Cd accumulating Brassica napus genotypes. Liao Q; Fu H; Shen C; Huang Y; Huang B; Hu C; Xiong X; Huang Y; Xin J Environ Sci Pollut Res Int; 2024 Feb; 31(8):11873-11885. PubMed ID: 38224442 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Qu C; Chen Z; Hu C Chemosphere; 2015 Nov; 138():526-36. PubMed ID: 26207887 [TBL] [Abstract][Full Text] [Related]
9. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Yan H; Filardo F; Hu X; Zhao X; Fu D Environ Sci Pollut Res Int; 2016 Feb; 23(4):3758-69. PubMed ID: 26498815 [TBL] [Abstract][Full Text] [Related]
10. The predominant role of pectin in binding Cd in the root cell wall of a high Cd accumulating rice line (Oryza sativa L.). Yu H; Wu Y; Huang H; Zhan J; Wang K; Li T Ecotoxicol Environ Saf; 2020 Dec; 206():111210. PubMed ID: 32890925 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Mwamba TM; Islam F; Ali B; Lwalaba JLW; Gill RA; Zhang F; Farooq MA; Ali S; Ulhassan Z; Huang Q; Zhou W; Wang J Chemosphere; 2020 Jul; 250():126308. PubMed ID: 32135439 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Pan F; Meng Q; Luo S; Shen J; Chen B; Khan KY; Japenga J; Ma X; Yang X; Feng Y Int J Phytoremediation; 2017 Mar; 19(3):281-289. PubMed ID: 27593491 [TBL] [Abstract][Full Text] [Related]
13. Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field. Cao X; Wang X; Tong W; Gurajala HK; He Z; Yang X Environ Sci Pollut Res Int; 2020 Jan; 27(2):2400-2411. PubMed ID: 31786758 [TBL] [Abstract][Full Text] [Related]
14. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. Zhang ZW; Deng ZL; Tao Q; Peng HQ; Wu F; Fu YF; Yang XY; Xu PZ; Li Y; Wang CQ; Chen YE; Yuan M; Lan T; Tang XY; Chen GD; Zeng J; Yuan S Chemosphere; 2022 Apr; 292():133466. PubMed ID: 34973246 [TBL] [Abstract][Full Text] [Related]
15. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Cao X; Wang X; Tong W; Gurajala HK; Lu M; Hamid Y; Feng Y; He Z; Yang X Environ Pollut; 2019 Sep; 252(Pt A):733-741. PubMed ID: 31200201 [TBL] [Abstract][Full Text] [Related]
16. Screening of low-Cd-accumulating and Cd-remediating oilseed rape varieties using a newly indicator system for risk management of Cd-contaminated agricultural land. Zhang Q; Wang L; Zhu J; Liu Q; Zhao F; Liao X Chemosphere; 2024 Jun; 358():142148. PubMed ID: 38679170 [TBL] [Abstract][Full Text] [Related]
17. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum. Wang J; Chen X; Chu S; Hayat K; Chi Y; Zhi Y; Zhang D; Zhou P Environ Sci Pollut Res Int; 2021 Mar; 28(11):13955-13969. PubMed ID: 33201503 [TBL] [Abstract][Full Text] [Related]
18. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Carrier P; Baryla A; Havaux M Planta; 2003 Apr; 216(6):939-50. PubMed ID: 12687361 [TBL] [Abstract][Full Text] [Related]
19. Accumulation, interaction and fractionation of fluoride and cadmium in sierozem and oilseed rape (Brassica napus L.) in northwest China. Li Y; Wang S; Zhang Q; Zang F; Nan Z; Sun H; Huang W; Bao L Plant Physiol Biochem; 2018 Jun; 127():457-468. PubMed ID: 29689509 [TBL] [Abstract][Full Text] [Related]
20. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Hu C Chemosphere; 2015 Jan; 119():1217-1223. PubMed ID: 25460764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]