These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 33934004)
1. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications. Garcia-Bordejé E; Benito AM; Maser WK Adv Colloid Interface Sci; 2021 Jun; 292():102420. PubMed ID: 33934004 [TBL] [Abstract][Full Text] [Related]
2. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. García-Bordejé E; Víctor-Román S; Sanahuja-Parejo O; Benito AM; Maser WK Nanoscale; 2018 Feb; 10(7):3526-3539. PubMed ID: 29410999 [TBL] [Abstract][Full Text] [Related]
3. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels. Ha H; Shanmuganathan K; Ellison CJ ACS Appl Mater Interfaces; 2015 Mar; 7(11):6220-9. PubMed ID: 25714662 [TBL] [Abstract][Full Text] [Related]
4. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Zhu C; Liu T; Qian F; Han TY; Duoss EB; Kuntz JD; Spadaccini CM; Worsley MA; Li Y Nano Lett; 2016 Jun; 16(6):3448-56. PubMed ID: 26789202 [TBL] [Abstract][Full Text] [Related]
5. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Jung SM; Mafra DL; Lin CT; Jung HY; Kong J Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978 [TBL] [Abstract][Full Text] [Related]
6. The implementation of graphene-based aerogel in the field of supercapacitor. Shaikh JS; Shaikh NS; Mishra YK; Pawar SS; Parveen N; Shewale PM; Sabale S; Kanjanaboos P; Praserthdam S; Lokhande CD Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34125718 [TBL] [Abstract][Full Text] [Related]
7. Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Yang P; Tontini G; Wang J; Kinloch IA; Barg S Nanotechnology; 2021 May; 32(20):205601. PubMed ID: 33494085 [TBL] [Abstract][Full Text] [Related]
8. Ultralight, High Capacitance, Mechanically Strong Graphene-Cellulose Aerogels. Wang X; Wan K; Xie P; Miao Y; Liu Z Molecules; 2021 Aug; 26(16):. PubMed ID: 34443476 [TBL] [Abstract][Full Text] [Related]
9. Ultralight-Weight Graphene Aerogels with Extremely High Electrical Conductivity. Dos Santos-Gómez L; García JR; Montes-Morán MA; Menéndez JA; García-Granda S; Arenillas A Small; 2021 Oct; 17(41):e2103407. PubMed ID: 34510733 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of graphene aerogel with high electrical conductivity. Worsley MA; Pauzauskie PJ; Olson TY; Biener J; Satcher JH; Baumann TF J Am Chem Soc; 2010 Oct; 132(40):14067-9. PubMed ID: 20860374 [TBL] [Abstract][Full Text] [Related]
11. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Wang H; Yuan X; Zeng G; Wu Y; Liu Y; Jiang Q; Gu S Adv Colloid Interface Sci; 2015 Jul; 221():41-59. PubMed ID: 25983012 [TBL] [Abstract][Full Text] [Related]
12. Chemical modification of graphene aerogels for electrochemical capacitor applications. Hong JY; Wie JJ; Xu Y; Park HS Phys Chem Chem Phys; 2015 Dec; 17(46):30946-62. PubMed ID: 26536234 [TBL] [Abstract][Full Text] [Related]
13. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Xu Y; Shi G; Duan X Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764 [TBL] [Abstract][Full Text] [Related]
14. A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS₂. Gong F; Liu X; Yang Y; Xia D; Wang W; Duong HM; Papavassiliou DV; Xu Z; Liao J; Wu M Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29194383 [TBL] [Abstract][Full Text] [Related]
15. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation. Xu Z; Zhou H; Tan S; Jiang X; Wu W; Shi J; Chen P Beilstein J Nanotechnol; 2018; 9():508-519. PubMed ID: 29527428 [TBL] [Abstract][Full Text] [Related]
16. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Li C; Yang J; Pachfule P; Li S; Ye MY; Schmidt J; Thomas A Nat Commun; 2020 Sep; 11(1):4712. PubMed ID: 32948768 [TBL] [Abstract][Full Text] [Related]
18. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Ren L; Hui KN; Hui KS; Liu Y; Qi X; Zhong J; Du Y; Yang J Sci Rep; 2015 Sep; 5():14229. PubMed ID: 26382852 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of highly crystalline graphene aerogels. Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720 [TBL] [Abstract][Full Text] [Related]
20. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. Xu X; Li H; Zhang Q; Hu H; Zhao Z; Li J; Li J; Qiao Y; Gogotsi Y ACS Nano; 2015 Apr; 9(4):3969-77. PubMed ID: 25792130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]