BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33934180)

  • 21. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits.
    Scheben A; Edwards D
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):218-225. PubMed ID: 29752075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant genome engineering in full bloom.
    Lozano-Juste J; Cutler SR
    Trends Plant Sci; 2014 May; 19(5):284-7. PubMed ID: 24674878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 26. CRISPR/Cas brings plant biology and breeding into the fast lane.
    Schindele A; Dorn A; Puchta H
    Curr Opin Biotechnol; 2020 Feb; 61():7-14. PubMed ID: 31557657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Editing in Sorghum Through Agrobacterium.
    Sander JD
    Methods Mol Biol; 2019; 1931():155-168. PubMed ID: 30652289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology.
    Kumlehn J; Pietralla J; Hensel G; Pacher M; Puchta H
    J Integr Plant Biol; 2018 Dec; 60(12):1127-1153. PubMed ID: 30387552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9: A Robust Genome-Editing Tool with Versatile Functions and Endless Application.
    Zhang B
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding.
    Rönspies M; Schindele P; Puchta H
    J Exp Bot; 2021 Feb; 72(2):177-183. PubMed ID: 33258473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding Sanger Sequencing Chromatograms from CRISPR-Induced Mutations.
    Xie X; Ma X; Liu YG
    Methods Mol Biol; 2019; 1917():33-43. PubMed ID: 30610626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Letter to the Editor: The World's First CRISPR Tomato Launched to a Japanese Market: The Social-Economic Impact of its Implementation on Crop Genome Editing.
    Ezura H
    Plant Cell Physiol; 2022 Jun; 63(6):731-733. PubMed ID: 35388425
    [No Abstract]   [Full Text] [Related]  

  • 35. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potato trait development going fast-forward with genome editing.
    Hofvander P; Andreasson E; Andersson M
    Trends Genet; 2022 Mar; 38(3):218-221. PubMed ID: 34702578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites.
    Zhong Z; Zhang Y; You Q; Tang X; Ren Q; Liu S; Yang L; Wang Y; Liu X; Liu B; Zhang T; Zheng X; Le Y; Zhang Y; Qi Y
    Mol Plant; 2018 Jul; 11(7):999-1002. PubMed ID: 29567452
    [No Abstract]   [Full Text] [Related]  

  • 38. A critical look on CRISPR-based genome editing in plants.
    Ahmad N; Rahman MU; Mukhtar Z; Zafar Y; Zhang B
    J Cell Physiol; 2020 Feb; 235(2):666-682. PubMed ID: 31317541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants.
    Liu S; Sretenovic S; Fan T; Cheng Y; Li G; Qi A; Tang X; Xu Y; Guo W; Zhong Z; He Y; Liang Y; Han Q; Zheng X; Gu X; Qi Y; Zhang Y
    Plant Commun; 2022 Nov; 3(6):100453. PubMed ID: 36127876
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.