These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 33934200)
1. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, L-carnitine and related precursors by the human gut microbiota. Day-Walsh P; Shehata E; Saha S; Savva GM; Nemeckova B; Speranza J; Kellingray L; Narbad A; Kroon PA Eur J Nutr; 2021 Oct; 60(7):3987-3999. PubMed ID: 33934200 [TBL] [Abstract][Full Text] [Related]
2. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related]
3. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985 [TBL] [Abstract][Full Text] [Related]
4. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice. Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979 [TBL] [Abstract][Full Text] [Related]
5. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Hoyles L; Jiménez-Pranteda ML; Chilloux J; Brial F; Myridakis A; Aranias T; Magnan C; Gibson GR; Sanderson JD; Nicholson JK; Gauguier D; McCartney AL; Dumas ME Microbiome; 2018 Apr; 6(1):73. PubMed ID: 29678198 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous determination of choline, L-carnitine, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in plasma, liver, and feces of hyperlipidemic rats by UHPLC-MS/MS. Xu C; Zhang M; Zhang S; Wang P; Lai C; Meng D; Chen Z; Yi X; Gao X J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Aug; 1243():124210. PubMed ID: 38936270 [TBL] [Abstract][Full Text] [Related]
7. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057 [TBL] [Abstract][Full Text] [Related]
8. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Fu BC; Hullar MAJ; Randolph TW; Franke AA; Monroe KR; Cheng I; Wilkens LR; Shepherd JA; Madeleine MM; Le Marchand L; Lim U; Lampe JW Am J Clin Nutr; 2020 Jun; 111(6):1226-1234. PubMed ID: 32055828 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine in clinical and food samples using HILIC-LC-MS. Hefni ME; Bergström M; Lennqvist T; Fagerström C; Witthöft CM Anal Bioanal Chem; 2021 Sep; 413(21):5349-5360. PubMed ID: 34258650 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Rajakovich LJ; Fu B; Bollenbach M; Balskus EP Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34362844 [TBL] [Abstract][Full Text] [Related]
11. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744 [TBL] [Abstract][Full Text] [Related]
12. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA; Vivas EI; Amador-Noguez D; Rey FE mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704 [TBL] [Abstract][Full Text] [Related]
13. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages, fruit juices and oils to control trimethylamine production in the colon. Bresciani L; Dall'Asta M; Favari C; Calani L; Del Rio D; Brighenti F Food Funct; 2018 Dec; 9(12):6470-6483. PubMed ID: 30465688 [TBL] [Abstract][Full Text] [Related]
14. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Simó C; García-Cañas V Food Funct; 2020 Aug; 11(8):6745-6776. PubMed ID: 32686802 [TBL] [Abstract][Full Text] [Related]
15. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Gupta N; Buffa JA; Roberts AB; Sangwan N; Skye SM; Li L; Ho KJ; Varga J; DiDonato JA; Tang WHW; Hazen SL Arterioscler Thromb Vasc Biol; 2020 May; 40(5):1239-1255. PubMed ID: 32212854 [TBL] [Abstract][Full Text] [Related]
16. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. Anwar S; Bhandari U; Panda BP; Dubey K; Khan W; Ahmad S J Pharm Biomed Anal; 2018 Sep; 159():100-112. PubMed ID: 29980011 [TBL] [Abstract][Full Text] [Related]
17. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Pathak P; Helsley RN; Brown AL; Buffa JA; Choucair I; Nemet I; Gogonea CB; Gogonea V; Wang Z; Garcia-Garcia JC; Cai L; Temel R; Sangwan N; Hazen SL; Brown JM Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1474-H1486. PubMed ID: 32330092 [TBL] [Abstract][Full Text] [Related]
18. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Zhu C; Sawrey-Kubicek L; Bardagjy AS; Houts H; Tang X; Sacchi R; Randolph JM; Steinberg FM; Zivkovic AM Nutr Res; 2020 Jun; 78():36-41. PubMed ID: 32464420 [TBL] [Abstract][Full Text] [Related]
19. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Coutinho-Wolino KS; de F Cardozo LFM; de Oliveira Leal V; Mafra D; Stockler-Pinto MB Eur J Nutr; 2021 Oct; 60(7):3567-3584. PubMed ID: 33533968 [TBL] [Abstract][Full Text] [Related]
20. Metagenomic data-mining reveals enrichment of trimethylamine-N-oxide synthesis in gut microbiome in atrial fibrillation patients. Zuo K; Liu X; Wang P; Jiao J; Han C; Liu Z; Yin X; Li J; Yang X BMC Genomics; 2020 Jul; 21(1):526. PubMed ID: 32731896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]