BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33934235)

  • 1. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis.
    Brinkmann P; Kotz SA; Smit JV; Janssen MLF; Schwartze M
    Brain Struct Funct; 2021 Jul; 226(6):1659-1676. PubMed ID: 33934235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory thalamic circuits and GABA
    Caspary DM; Llano DA
    Hear Res; 2017 Jun; 349():197-207. PubMed ID: 27553899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus.
    Kalappa BI; Brozoski TJ; Turner JG; Caspary DM
    J Physiol; 2014 Nov; 592(22):5065-78. PubMed ID: 25217380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.
    Zhang J
    Hear Res; 2013 Jan; 295():38-57. PubMed ID: 22683861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas.
    Berlot E; Arts R; Smit J; George E; Gulban OF; Moerel M; Stokroos R; Formisano E; De Martino F
    Neuroimage Clin; 2020; 25():102166. PubMed ID: 31958686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss.
    Boyen K; de Kleine E; van Dijk P; Langers DR
    Hear Res; 2014 Jun; 312():48-59. PubMed ID: 24631963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Structural Connectivity Between Left Auditory Thalamus and the Motion-Sensitive Planum Temporale in Developmental Dyslexia.
    Tschentscher N; Ruisinger A; Blank H; Díaz B; von Kriegstein K
    J Neurosci; 2019 Feb; 39(9):1720-1732. PubMed ID: 30643025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant thalamocortical coherence in an animal model of tinnitus.
    Vianney-Rodrigues P; Auerbach BD; Salvi R
    J Neurophysiol; 2019 Mar; 121(3):893-907. PubMed ID: 30625004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory gating functions of the auditory thalamus: Adaptation and modulations through noise-exposure and high-frequency stimulation in rats.
    Zare A; van Zwieten G; Kotz SA; Temel Y; Almasabi F; Schultz BG; Schwartze M; Janssen MLF
    Behav Brain Res; 2023 Jul; 450():114498. PubMed ID: 37201892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex.
    Basta D; Goetze R; Ernst A
    Hear Res; 2008 Jun; 240(1-2):42-51. PubMed ID: 18372130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
    Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM
    J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological differences between histologically defined subdivisions in the mouse auditory thalamus.
    Anderson LA; Linden JF
    Hear Res; 2011 Apr; 274(1-2):48-60. PubMed ID: 21185928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets.
    Jeschke M; Ohl FW; Wang X
    Front Neural Circuits; 2021; 15():786740. PubMed ID: 35069125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between perception and brain activity in gaze-evoked tinnitus.
    van Gendt MJ; Boyen K; de Kleine E; Langers DR; van Dijk P
    J Neurosci; 2012 Dec; 32(49):17528-39. PubMed ID: 23223277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of corticothalamic terminals arising from the auditory cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study.
    Rouiller EM; Welker E
    Hear Res; 1991 Nov; 56(1-2):179-90. PubMed ID: 1769912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
    Chambers AR; Salazar JJ; Polley DB
    Front Neural Circuits; 2016; 10():72. PubMed ID: 27630546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-induced neurophysiological alterations in the rat medial geniculate body and thalamocortical desynchronization by deep brain stimulation.
    van Zwieten G; Roberts MJ; Schaper FLVW; Smit JV; Temel Y; Janssen MLF
    J Neurophysiol; 2021 Feb; 125(2):661-671. PubMed ID: 33405997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.
    Gunbey HP; Gunbey E; Aslan K; Bulut T; Unal A; Incesu L
    Clin Neuroradiol; 2017 Jun; 27(2):221-230. PubMed ID: 26490370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural representations of temporally modulated signals in the auditory thalamus of awake primates.
    Bartlett EL; Wang X
    J Neurophysiol; 2007 Feb; 97(2):1005-17. PubMed ID: 17050830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.