BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33934457)

  • 1. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest.
    Lyu M; Giardina CP; Litton CM
    Glob Chang Biol; 2021 Aug; 27(16):3824-3836. PubMed ID: 33934457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.
    Selmants PC; Litton CM; Giardina CP; Asner GP
    Glob Chang Biol; 2014 Sep; 20(9):2927-37. PubMed ID: 24838341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests.
    Bothwell LD; Selmants PC; Giardina CP; Litton CM
    PeerJ; 2014; 2():e685. PubMed ID: 25493213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Mean Annual Temperature on Nutrient Availability in a Tropical Montane Wet Forest.
    Litton CM; Giardina CP; Freeman KR; Selmants PC; Sparks JP
    Front Plant Sci; 2020; 11():784. PubMed ID: 32595675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate implications on forest above- and belowground carbon allocation patterns along a tropical elevation gradient on Mt. Kilimanjaro (Tanzania).
    Sierra Cornejo N; Leuschner C; Becker JN; Hemp A; Schellenberger Costa D; Hertel D
    Oecologia; 2021 Mar; 195(3):797-812. PubMed ID: 33630169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear responses of total belowground carbon flux and its components to increased nitrogen availability in temperate forests.
    Zeng W; Zhang J; Dong L; Wang W; Zeng H
    Sci Total Environ; 2020 May; 715():136954. PubMed ID: 32041052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.
    Sayer EJ; Powers JS; Tanner EV
    PLoS One; 2007 Dec; 2(12):e1299. PubMed ID: 18074023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature influences carbon accumulation in moist tropical forests.
    Raich JW; Russell AE; Kitayama K; Parton WJ; Vitousek PM
    Ecology; 2006 Jan; 87(1):76-87. PubMed ID: 16634298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes.
    Nottingham AT; Bååth E; Reischke S; Salinas N; Meir P
    Glob Chang Biol; 2019 Mar; 25(3):827-838. PubMed ID: 30372571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogeographic variation in temperature sensitivity of decomposition in forest soils.
    Li J; Nie M; Pendall E; Reich PB; Pei J; Noh NJ; Zhu T; Li B; Fang C
    Glob Chang Biol; 2020 Mar; 26(3):1873-1885. PubMed ID: 31518470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea.
    Venter M; Dwyer J; Dieleman W; Ramachandra A; Gillieson D; Laurance S; Cernusak LA; Beehler B; Jensen R; Bird MI
    Glob Chang Biol; 2017 Nov; 23(11):4873-4883. PubMed ID: 28560838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon allocation in a Bornean tropical rainforest without dry seasons.
    Katayama A; Kume T; Komatsu H; Saitoh TM; Ohashi M; Nakagawa M; Suzuki M; Otsuki K; Kumagai T
    J Plant Res; 2013 Jul; 126(4):505-15. PubMed ID: 23283581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant community responses to stand-level nutrient fertilization in a secondary tropical dry forest.
    Waring BG; Pérez-Aviles D; Murray JG; Powers JS
    Ecology; 2019 Jun; 100(6):e02691. PubMed ID: 30989648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and rainfall interact to control carbon cycling in tropical forests.
    Taylor PG; Cleveland CC; Wieder WR; Sullivan BW; Doughty CE; Dobrowski SZ; Townsend AR
    Ecol Lett; 2017 Jun; 20(6):779-788. PubMed ID: 28414883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia.
    Muqaddas B; Lewis T
    Sci Total Environ; 2020 Mar; 706():136035. PubMed ID: 31841841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests.
    Riutta T; Kho LK; Teh YA; Ewers R; Majalap N; Malhi Y
    Glob Chang Biol; 2021 May; 27(10):2225-2240. PubMed ID: 33462919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Litterfall biomass and nutrient cycling in karst and nearby non-karst forests in tropical China: A 10-year comparison.
    Zhu X; Zou X; Lu E; Deng Y; Luo Y; Chen H; Liu W
    Sci Total Environ; 2021 Mar; 758():143619. PubMed ID: 33221014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global patterns of forest autotrophic carbon fluxes.
    Banbury Morgan R; Herrmann V; Kunert N; Bond-Lamberty B; Muller-Landau HC; Anderson-Teixeira KJ
    Glob Chang Biol; 2021 Jun; 27(12):2840-2855. PubMed ID: 33651480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.