BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33934864)

  • 1. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic selection improves the possibility of applying multiple breeding programs in different environments.
    Slagboom M; Kargo M; Sørensen AC; Thomasen JR; Mulder HA
    J Dairy Sci; 2019 Sep; 102(9):8197-8209. PubMed ID: 31326182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
    Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC
    Front Genet; 2020; 11():251. PubMed ID: 32373152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ignoring genotype by environment interaction in the genetic evaluation of dairy cattle reduces accuracy but may increase selection intensity.
    Slagboom M; Sørensen AC; Thomasen JR; Liu H; Kargo M; Hjortø L
    J Dairy Sci; 2021 Dec; 104(12):12756-12764. PubMed ID: 34600706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient use of genomic information for sustainable genetic improvement in small cattle populations.
    Obšteter J; Jenko J; Hickey JM; Gorjanc G
    J Dairy Sci; 2019 Nov; 102(11):9971-9982. PubMed ID: 31477287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.
    Yin T; Wensch-Dorendorf M; Simianer H; Swalve HH; König S
    Animal; 2014 Jun; 8(6):877-86. PubMed ID: 24703184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term selection strategies for complex traits using high-density genetic markers.
    Kemper KE; Bowman PJ; Pryce JE; Hayes BJ; Goddard ME
    J Dairy Sci; 2012 Aug; 95(8):4646-56. PubMed ID: 22818479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mating advice system in dairy cattle incorporating genomic information.
    Carthy TR; McCarthy J; Berry DP
    J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction.
    Mulder HA; Bijma P
    J Dairy Sci; 2006 May; 89(5):1727-39. PubMed ID: 16606744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
    Hjortø L; Henryon M; Liu H; Berg P; Thomasen JR; Sørensen AC
    Genet Sel Evol; 2021 Sep; 53(1):75. PubMed ID: 34551728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits.
    Scheper C; Wensch-Dorendorf M; Yin T; Dressel H; Swalve H; König S
    Genet Sel Evol; 2016 Jun; 48(1):50. PubMed ID: 27357942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs.
    He J; Wu XL; Zeng Q; Li H; Ma H; Jiang J; Rosa GJM; Gianola D; Tait RG; Bauck S
    PLoS One; 2020; 15(8):e0236629. PubMed ID: 32797113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.