BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33935565)

  • 1. Biosynthesis of silver nanoparticles using
    Al-Otibi F; Perveen K; Al-Saif NA; Alharbi RI; Bokhari NA; Albasher G; Al-Otaibi RM; Al-Mosa MA
    Saudi J Biol Sci; 2021 Apr; 28(4):2229-2235. PubMed ID: 33935565
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Dhaka A; Raj S; Githala CK; Chand Mali S; Trivedi R
    Front Bioeng Biotechnol; 2022; 10():977101. PubMed ID: 36267455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial Potential of Biosynthesized Silver Nanoparticles by
    Al-Otibi F; Al-Ahaidib RA; Alharbi RI; Al-Otaibi RM; Albasher G
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using
    Ashraf H; Anjum T; Riaz S; Naseem S
    Front Microbiol; 2020; 11():238. PubMed ID: 32210928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Antifungal Activities of Silver Nano-Aggregates Biosynthesized from the Aqueous Extract and the Alkaline Aqueous Fraction of
    Al-Otibi F
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202544
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates.
    Balakrishnan S; Sivaji I; Kandasamy S; Duraisamy S; Kumar NS; Gurusubramanian G
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14758-14769. PubMed ID: 28470497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.
    Fouda A; Hassan SE; Abdo AM; El-Gamal MS
    Biol Trace Elem Res; 2020 Jun; 195(2):707-724. PubMed ID: 31486967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of silver nanoparticles employing
    Dashora A; Rathore K; Raj S; Sharma K
    Biochem Biophys Rep; 2022 Sep; 31():101320. PubMed ID: 36032398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Antimicrobial Activities of Silver Nanoparticles from Aqueous Extract of Grape Seeds against Pathogenic Bacteria and Fungi.
    Al-Otibi F; Alkhudhair SK; Alharbi RI; Al-Askar AA; Aljowaie RM; Al-Shehri S
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Biosynthesis of Silver Nanoparticles Using
    Oraibi AG; Yahia HN; Alobaidi KH
    Scientifica (Cairo); 2022; 2022():4894642. PubMed ID: 35677863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis and Characterization of Silver Nanoparticles from Methanol Leaf Extract of Cassia didymobotyra and Assessment of Their Antioxidant and Antibacterial Activities.
    Akhtar MS; Swamy MK; Umar A; Al Sahli AA
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9818-23. PubMed ID: 26682418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity.
    Khan S; Singh S; Gaikwad S; Nawani N; Junnarkar M; Pawar SV
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27221-27233. PubMed ID: 31065983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malva parviflora extract assisted green synthesis of silver nanoparticles.
    Zayed MF; Eisa WH; Shabaka AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():423-8. PubMed ID: 23010627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae).
    Subarani S; Sabhanayakam S; Kamaraj C
    Parasitol Res; 2013 Feb; 112(2):487-99. PubMed ID: 23064800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract.
    Rasheed T; Bilal M; Li C; Iqbal HMN
    Curr Pharm Biotechnol; 2017; 18(14):1116-1123. PubMed ID: 29446732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): synthesis and in vitro cytotoxic effect on mcf-7 cells.
    Heydari R; Rashidipour M
    Int J Breast Cancer; 2015; 2015():846743. PubMed ID: 25685560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of Silver Nanoparticles and Exploring Their Potential of Reducing the Contamination of the In Vitro Culture Media and Inducing the Callus Growth of
    Alfarraj NS; Tarroum M; Al-Qurainy F; Nadeem M; Khan S; Salih AM; Shaikhaldein HO; Al-Hashimi A; Alansi S; Perveen K
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosquito larvicidal potential of
    Kumar P; Kumar D; Kumar V; Chauhan R; Singh H
    J Vector Borne Dis; 2022; 59(3):216-227. PubMed ID: 36511037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of antifungal activity of two preparations of green silver nanoparticles from
    Al-Otibi F; Alfuzan SA; Alharbi RI; Al-Askar AA; Al-Otaibi RM; Al Subaie HF; Moubayed NMS
    Saudi J Biol Sci; 2022 Apr; 29(4):2772-2781. PubMed ID: 35531187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenic Synthesis of Silver Nanoparticles (AgNPs) Using Aqueous Leaf Extract of
    Purohit A; Sharma R; Shiv Ramakrishnan R; Sharma S; Kumar A; Jain D; Kushwaha HS; Maharjan E
    Bioinorg Chem Appl; 2022; 2022():6825150. PubMed ID: 35308019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.