These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33936032)

  • 21. ATP-P2X7-Induced Inflammasome Activation Contributes to Melanocyte Death and CD8
    Ahn Y; Seo J; Lee EJ; Kim JY; Park MY; Hwang S; Almurayshid A; Lim BJ; Yu JW; Oh SH
    J Invest Dermatol; 2020 Sep; 140(9):1794-1804.e4. PubMed ID: 32035094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response.
    He S; Xu J; Wu J
    Oxid Med Cell Longev; 2022; 2022():8796735. PubMed ID: 35096274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytokines: the yin and yang of vitiligo pathogenesis.
    Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R
    Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of aryl hydrocarbon receptor in vitiligo: a review.
    Li Y; Zeng Y; Chen Z; Tan X; Mei X; Wu Z
    Front Immunol; 2024; 15():1291556. PubMed ID: 38361944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possible roles of B lymphocyte activating factor of the tumour necrosis factor family in vitiligo autoimmunity.
    Lin X; Tian H; Xianmin M
    Med Hypotheses; 2011 Mar; 76(3):339-42. PubMed ID: 21075543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Autoimmune aspects of vitiligo.
    Kemp EH; Waterman EA; Weetman AP
    Autoimmunity; 2001; 34(1):65-77. PubMed ID: 11681494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo.
    Tulic MK; Cavazza E; Cheli Y; Jacquel A; Luci C; Cardot-Leccia N; Hadhiri-Bzioueche H; Abbe P; Gesson M; Sormani L; Regazzetti C; Beranger GE; Lereverend C; Pons C; Khemis A; Ballotti R; Bertolotto C; Rocchi S; Passeron T
    Nat Commun; 2019 May; 10(1):2178. PubMed ID: 31097717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitiligo.
    Picardo M; Dell'Anna ML; Ezzedine K; Hamzavi I; Harris JE; Parsad D; Taieb A
    Nat Rev Dis Primers; 2015 Jun; 1():15011. PubMed ID: 27189851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitiligo as an inflammatory skin disorder: a therapeutic perspective.
    Taïeb A
    Pigment Cell Melanoma Res; 2012 Jan; 25(1):9-13. PubMed ID: 22099450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential Role of Chronic Physical Exercise as a Treatment in the Development of Vitiligo.
    de França E; Dos Santos RVT; Baptista LC; Da Silva MAR; Fukushima AR; Hirota VB; Martins RA; Caperuto EC
    Front Physiol; 2022; 13():843784. PubMed ID: 35360245
    [No Abstract]   [Full Text] [Related]  

  • 31. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo.
    Kim JY; Lee EJ; Seo J; Oh SH
    Br J Dermatol; 2017 Jun; 176(6):1558-1568. PubMed ID: 27787879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology.
    Yamamoto A; Yang L; Kuroda Y; Guo J; Teng L; Tsuruta D; Katayama I
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.
    Seleit I; Bakry OA; Abdou AG; Dawoud NM
    Ann Diagn Pathol; 2014 Jun; 18(3):117-24. PubMed ID: 24560443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Type I interferon signature in the initiation of the immune response in vitiligo.
    Bertolotti A; Boniface K; Vergier B; Mossalayi D; Taieb A; Ezzedine K; Seneschal J
    Pigment Cell Melanoma Res; 2014 May; 27(3):398-407. PubMed ID: 24438589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications.
    Chang WL; Ko CH
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translational Research in Vitiligo.
    Katz EL; Harris JE
    Front Immunol; 2021; 12():624517. PubMed ID: 33737930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions.
    Lambe T; Leung JC; Bouriez-Jones T; Silver K; Makinen K; Crockford TL; Ferry H; Forrester JV; Cornall RJ
    J Immunol; 2006 Sep; 177(5):3055-62. PubMed ID: 16920942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo.
    Kroll TM; Bommiasamy H; Boissy RE; Hernandez C; Nickoloff BJ; Mestril R; Caroline Le Poole I
    J Invest Dermatol; 2005 Apr; 124(4):798-806. PubMed ID: 15816839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.