These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33936032)

  • 41. Predominant role of innate pro-inflammatory cytokines in vitiligo disease.
    Gholijani N; Yazdani MR; Dastgheib L
    Arch Dermatol Res; 2020 Mar; 312(2):123-131. PubMed ID: 31620869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vitiligo: where do we stand?
    Ortonne JP; Bose SK
    Pigment Cell Res; 1993 Mar; 6(2):61-72. PubMed ID: 8321867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vitiligo: Mechanisms of Pathogenesis and Treatment.
    Frisoli ML; Essien K; Harris JE
    Annu Rev Immunol; 2020 Apr; 38():621-648. PubMed ID: 32017656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.
    Dey-Rao R; Sinha AA
    BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The unfolded protein and integrated stress response in melanoma and vitiligo.
    Manga P; Choudhury N
    Pigment Cell Melanoma Res; 2021 Mar; 34(2):204-211. PubMed ID: 33215847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy?
    Gauthier Y; Cario Andre M; Taïeb A
    Pigment Cell Res; 2003 Aug; 16(4):322-32. PubMed ID: 12859615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.
    Boukhedouni N; Martins C; Darrigade AS; Drullion C; Rambert J; Barrault C; Garnier J; Jacquemin C; Thiolat D; Lucchese F; Morel F; Ezzedine K; Taieb A; Bernard FX; Seneschal J; Boniface K
    JCI Insight; 2020 Jun; 5(11):. PubMed ID: 32369451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Innate Lymphocytes in Inflammatory Arthritis.
    Wu X
    Front Immunol; 2020; 11():565275. PubMed ID: 33072104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons.
    Santoni G; Cardinali C; Morelli MB; Santoni M; Nabissi M; Amantini C
    J Neuroinflammation; 2015 Feb; 12():21. PubMed ID: 25644504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.
    Wagner RY; Luciani F; Cario-André M; Rubod A; Petit V; Benzekri L; Ezzedine K; Lepreux S; Steingrimsson E; Taieb A; Gauthier Y; Larue L; Delmas V
    J Invest Dermatol; 2015 Jul; 135(7):1810-1819. PubMed ID: 25634357
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of Toll-Like Receptors in Skin Host Defense, Psoriasis, and Atopic Dermatitis.
    Sun L; Liu W; Zhang LJ
    J Immunol Res; 2019; 2019():1824624. PubMed ID: 31815151
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vitiligo: current medical and scientific understanding.
    Boissy RE; Nordlund JJ
    G Ital Dermatol Venereol; 2011 Feb; 146(1):69-75. PubMed ID: 21317859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of innate lymphoid cells in healthy and inflamed skin.
    Bonefeld CM; Geisler C
    Immunol Lett; 2016 Nov; 179():25-28. PubMed ID: 26794088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lymphoid Stress Surveillance Response Contributes to Vitiligo Pathogenesis.
    Raam L; Kaleviste E; Šunina M; Vaher H; Saare M; Prans E; Pihlap M; Abram K; Karelson M; Peterson P; Rebane A; Kisand K; Kingo K
    Front Immunol; 2018; 9():2707. PubMed ID: 30515176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Melanocyte-specific, cytotoxic T cell responses in vitiligo: the effective variant of melanoma immunity?
    Garbelli S; Mantovani S; Palermo B; Giachino C
    Pigment Cell Res; 2005 Aug; 18(4):234-42. PubMed ID: 16029417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vitiligo, reactive oxygen species and T-cells.
    Glassman SJ
    Clin Sci (Lond); 2011 Feb; 120(3):99-120. PubMed ID: 20958268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes.
    Shajil EM; Chatterjee S; Agrawal D; Bagchi T; Begum R
    Indian J Exp Biol; 2006 Jul; 44(7):526-39. PubMed ID: 16872041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current Concepts of Vitiligo Immunopathogenesis.
    Hlača N; Žagar T; Kaštelan M; Brajac I; Prpić-Massari L
    Biomedicines; 2022 Jul; 10(7):. PubMed ID: 35884944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiopathology and genetics of vitiligo.
    Passeron T; Ortonne JP
    J Autoimmun; 2005; 25 Suppl():63-8. PubMed ID: 16298511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo.
    Dell'anna ML; Picardo M
    Pigment Cell Res; 2006 Oct; 19(5):406-11. PubMed ID: 16965269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.