BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 33936108)

  • 1. Central Nervous System Barriers Impact Distribution and Expression of iNOS and Arginase-1 in Infiltrating Macrophages During Neuroinflammation.
    Ivan DC; Walthert S; Locatelli G
    Front Immunol; 2021; 12():666961. PubMed ID: 33936108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of junctional adhesion molecule (JAM)-B ameliorates experimental autoimmune encephalomyelitis.
    Tietz S; Périnat T; Greene G; Enzmann G; Deutsch U; Adams R; Imhof B; Aurrand-Lions M; Engelhardt B
    Brain Behav Immun; 2018 Oct; 73():3-20. PubMed ID: 29920328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis.
    Rossetti I; Zambusi L; Finardi A; Bodini A; Provini L; Furlan R; Morara S
    J Neuroimmunol; 2018 Oct; 323():94-104. PubMed ID: 30196840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.
    Veremeyko T; Yung AWY; Dukhinova M; Kuznetsova IS; Pomytkin I; Lyundup A; Strekalova T; Barteneva NS; Ponomarev ED
    Front Immunol; 2018; 9():50. PubMed ID: 29422898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage migration inhibitory factor potentiates autoimmune-mediated neuroinflammation.
    Cox GM; Kithcart AP; Pitt D; Guan Z; Alexander J; Williams JL; Shawler T; Dagia NM; Popovich PG; Satoskar AR; Whitacre CC
    J Immunol; 2013 Aug; 191(3):1043-54. PubMed ID: 23797673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Impairment of the Endothelial and Glial Barriers of the Neurovascular Unit during Experimental Autoimmune Encephalomyelitis In Vivo.
    Tietz SM; Engelhardt B
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.
    Souza PS; Gonçalves ED; Pedroso GS; Farias HR; Junqueira SC; Marcon R; Tuon T; Cola M; Silveira PCL; Santos AR; Calixto JB; Souza CT; de Pinho RA; Dutra RC
    Mol Neurobiol; 2017 Aug; 54(6):4723-4737. PubMed ID: 27447807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis.
    Sonar SA; Lal G
    Front Immunol; 2019; 10():710. PubMed ID: 31019516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connexin 30 Deficiency Attenuates Chronic but Not Acute Phases of Experimental Autoimmune Encephalomyelitis Through Induction of Neuroprotective Microglia.
    Fang M; Yamasaki R; Li G; Masaki K; Yamaguchi H; Fujita A; Isobe N; Kira JI
    Front Immunol; 2018; 9():2588. PubMed ID: 30464764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking.
    Göbel K; Pankratz S; Schneider-Hohendorf T; Bittner S; Schuhmann MK; Langer HF; Stoll G; Wiendl H; Kleinschnitz C; Meuth SG
    J Autoimmun; 2011 Mar; 36(2):106-14. PubMed ID: 21216565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A20 regulates lymphocyte adhesion in murine neuroinflammation by restricting endothelial ICOSL expression in the CNS.
    Johann L; Soldati S; Müller K; Lampe J; Marini F; Klein M; Schramm E; Ries N; Schelmbauer C; Palagi I; Karram K; Assmann JC; Khan MA; Wenzel J; Schmidt MH; Körbelin J; Schlüter D; van Loo G; Bopp T; Engelhardt B; Schwaninger M; Waisman A
    J Clin Invest; 2023 Dec; 133(24):. PubMed ID: 37856217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17 cells.
    Gao Q; Zhang Y; Han C; Hu X; Zhang H; Xu X; Tian J; Liu Y; Ding Y; Liu J; Wang C; Guo Z; Yang Y; Cao X
    J Autoimmun; 2016 May; 69():74-85. PubMed ID: 26994903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis.
    Lengfeld JE; Lutz SE; Smith JR; Diaconu C; Scott C; Kofman SB; Choi C; Walsh CM; Raine CS; Agalliu I; Agalliu D
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1168-E1177. PubMed ID: 28137846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis.
    Lazarevic I; Soldati S; Mapunda JA; Rudolph H; Rosito M; de Oliveira AC; Enzmann G; Nishihara H; Ishikawa H; Tenenbaum T; Schroten H; Engelhardt B
    Fluids Barriers CNS; 2023 Jun; 20(1):39. PubMed ID: 37264368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-cell trafficking competence is required for CNS invasion.
    Lees JR; Archambault AS; Russell JH
    J Neuroimmunol; 2006 Aug; 177(1-2):1-10. PubMed ID: 16822552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis.
    Uchida Y; Sumiya T; Tachikawa M; Yamakawa T; Murata S; Yagi Y; Sato K; Stephan A; Ito K; Ohtsuki S; Couraud PO; Suzuki T; Terasaki T
    Mol Neurobiol; 2019 Mar; 56(3):2039-2056. PubMed ID: 29984400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel HS-mimetic, Tet-29, regulates immune cell trafficking across barriers of the CNS during inflammation.
    Peck T; Davis C; Lenihan-Geels G; Griffiths M; Spijkers-Shaw S; Zubkova OV; La Flamme AC
    J Neuroinflammation; 2023 Nov; 20(1):251. PubMed ID: 37915090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ulinastatin attenuates experimental autoimmune encephalomyelitis by enhancing anti-inflammatory responses.
    Feng M; Shu Y; Yang Y; Zheng X; Li R; Wang Y; Dai Y; Qiu W; Lu Z; Hu X
    Neurochem Int; 2014 Jan; 64():64-72. PubMed ID: 24274996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-1β enables CNS access to CCR2
    Paré A; Mailhot B; Lévesque SA; Juzwik C; Ignatius Arokia Doss PM; Lécuyer MA; Prat A; Rangachari M; Fournier A; Lacroix S
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1194-E1203. PubMed ID: 29358392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation.
    Cherry JD; Olschowka JA; O'Banion MK
    J Neuroinflammation; 2015 Nov; 12():203. PubMed ID: 26538310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.