These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 33936117)
21. Construction and Validation of a Tumor Microenvironment-Based Scoring System to Evaluate Prognosis and Response to Immune Checkpoint Inhibitor Therapy in Lung Adenocarcinoma Patients. Huang P; Xu L; Jin M; Li L; Ke Y; Zhang M; Zhang K; Lu K; Huang G Genes (Basel); 2022 May; 13(6):. PubMed ID: 35741714 [TBL] [Abstract][Full Text] [Related]
22. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Hu J; Yu A; Othmane B; Qiu D; Li H; Li C; Liu P; Ren W; Chen M; Gong G; Guo X; Zhang H; Chen J; Zu X Theranostics; 2021; 11(7):3089-3108. PubMed ID: 33537076 [No Abstract] [Full Text] [Related]
23. Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Bladder Cancer. Huang M; Liu L; Zhu J; Jin T; Chen Y; Xu L; Cheng W; Ruan X; Su L; Meng J; Lu X; Yan F Front Cell Dev Biol; 2021; 9():723817. PubMed ID: 34532318 [TBL] [Abstract][Full Text] [Related]
24. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. Song D; Powles T; Shi L; Zhang L; Ingersoll MA; Lu YJ J Pathol; 2019 Oct; 249(2):151-165. PubMed ID: 31102277 [TBL] [Abstract][Full Text] [Related]
25. Machine learning-based identification of tumor-infiltrating immune cell-associated model with appealing implications in improving prognosis and immunotherapy response in bladder cancer patients. Chen H; Yang W; Ji Z Front Immunol; 2023; 14():1171420. PubMed ID: 37063886 [TBL] [Abstract][Full Text] [Related]
26. An antigen processing and presentation signature for prognostic evaluation and immunotherapy selection in advanced gastric cancer. Wang KW; Wang MD; Li ZX; Hu BS; Wu JJ; Yuan ZD; Wu XL; Yuan QF; Yuan FL Front Immunol; 2022; 13():992060. PubMed ID: 36311733 [TBL] [Abstract][Full Text] [Related]
27. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment. Jenkins S; Wesolowski R; Gatti-Mays ME Curr Oncol Rep; 2021 Mar; 23(5):55. PubMed ID: 33755828 [TBL] [Abstract][Full Text] [Related]
28. Identifying prognostic biomarker related to immune infiltration in acute myeloid leukemia. Lu W; Yu G; Li Y; Yin C; Long J; Chen X; Chen Y; Zheng Z; Lai Y; Zhou X; Xu D Clin Exp Med; 2023 Dec; 23(8):4553-4562. PubMed ID: 37561221 [TBL] [Abstract][Full Text] [Related]
29. CDK6 as a Biomarker for Immunotherapy, Drug Sensitivity, and Prognosis in Bladder Cancer: Bioinformatics and Immunohistochemical Analysis. Zhao X; Yu X; Li W; Chen Z; Niu T; Weng X; Wang L; Liu X Int J Med Sci; 2024; 21(12):2414-2429. PubMed ID: 39310261 [No Abstract] [Full Text] [Related]
30. Construction and validation of a bladder cancer risk model based on autophagy-related genes. Shen C; Yan Y; Yang S; Wang Z; Wu Z; Li Z; Zhang Z; Lin Y; Li P; Hu H Funct Integr Genomics; 2023 Jan; 23(1):46. PubMed ID: 36689018 [TBL] [Abstract][Full Text] [Related]
31. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies. Wu Q; Tian R; He X; Liu J; Ou C; Li Y; Fu X Front Immunol; 2023; 14():1164408. PubMed ID: 37090728 [TBL] [Abstract][Full Text] [Related]
32. NKG2A and PD-L1 expression panel predicts clinical benefits from adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer. Yan S; Zeng H; Jin K; Shao F; Liu Z; Chang Y; Wang Y; Zhu Y; Wang Z; Xu L; Xu J J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35523436 [TBL] [Abstract][Full Text] [Related]
33. A tumor microenvironment-related risk model for predicting the prognosis and tumor immunity of breast cancer patients. Geng S; Fu Y; Fu S; Wu K Front Immunol; 2022; 13():927565. PubMed ID: 36059555 [TBL] [Abstract][Full Text] [Related]
34. Leveraging programmed cell death signature to predict clinical outcome and immunotherapy benefits in postoperative bladder cancer. Wang Y; Zhang Q Sci Rep; 2024 Oct; 14(1):22976. PubMed ID: 39363008 [TBL] [Abstract][Full Text] [Related]
35. Identification of fatty acid metabolism-related molecular subtype biomarkers and their correlation with immune checkpoints in cutaneous melanoma. Xu Y; Chen Y; Jiang W; Yin X; Chen D; Chi Y; Wang Y; Zhang J; Zhang Q; Han Y Front Immunol; 2022; 13():967277. PubMed ID: 36466837 [TBL] [Abstract][Full Text] [Related]
36. Tumor Microenvironment Analysis Identified Subtypes Associated With the Prognosis and the Tumor Response to Immunotherapy in Bladder Cancer. Zhang H; Song J; Dong J; Liu Z; Lin L; Wang B; Ma Q; Ma L Front Genet; 2021; 12():551605. PubMed ID: 33732281 [No Abstract] [Full Text] [Related]
37. Deciphering the immunological and prognostic features of bladder cancer through platinum-resistance-related genes analysis and identifying potential therapeutic target P4HB. Xiong S; Li S; Zeng J; Nie J; Liu T; Liu X; Chen L; Fu B; Deng J; Xu S Front Immunol; 2023; 14():1253586. PubMed ID: 37790935 [TBL] [Abstract][Full Text] [Related]
38. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X Front Immunol; 2022; 13():1056932. PubMed ID: 36479114 [TBL] [Abstract][Full Text] [Related]
39. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH Front Immunol; 2020; 11():784. PubMed ID: 32457745 [TBL] [Abstract][Full Text] [Related]
40. The Impact of NOTCH Pathway Alteration on Tumor Microenvironment and Clinical Survival of Immune Checkpoint Inhibitors in NSCLC. Li X; Wang Y; Li X; Feng G; Hu S; Bai Y Front Immunol; 2021; 12():638763. PubMed ID: 34305884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]