These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33936126)
1. Induced Local and Systemic Defense Responses in Tomato Underlying Interactions Between the Root-Knot Nematode Mbaluto CM; Ahmad EM; Mädicke A; Grosser K; van Dam NM; Martínez-Medina A Front Plant Sci; 2021; 12():632212. PubMed ID: 33936126 [TBL] [Abstract][Full Text] [Related]
2. Volatiles and hormones mediated root-knot nematode induced wheat defense response to foliar herbivore aphid. Shi JH; Liu H; Pham TC; Hu XJ; Liu L; Wang C; Foba CN; Wang SB; Wang MQ Sci Total Environ; 2022 Apr; 815():152840. PubMed ID: 34995605 [TBL] [Abstract][Full Text] [Related]
3. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. Mbaluto CM; Vergara F; van Dam NM; Martínez-Medina A J Exp Bot; 2021 Dec; 72(22):7909-7926. PubMed ID: 34545935 [TBL] [Abstract][Full Text] [Related]
4. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Vos P; Simons G; Jesse T; Wijbrandi J; Heinen L; Hogers R; Frijters A; Groenendijk J; Diergaarde P; Reijans M; Fierens-Onstenk J; de Both M; Peleman J; Liharska T; Hontelez J; Zabeau M Nat Biotechnol; 1998 Dec; 16(13):1365-9. PubMed ID: 9853621 [TBL] [Abstract][Full Text] [Related]
5. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. de Ilarduya OM; Moore AE; Kaloshian I Plant J; 2001 Sep; 27(5):417-25. PubMed ID: 11576426 [TBL] [Abstract][Full Text] [Related]
6. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Goggin FL; Jia L; Shah G; Hebert S; Williamson VM; Ullman DE Mol Plant Microbe Interact; 2006 Apr; 19(4):383-8. PubMed ID: 16610741 [TBL] [Abstract][Full Text] [Related]
7. Mi-1.2 Transcripts Accumulate Ubiquitously in Resistant Lycopersicon esculentum. de Ilarduya OM; Kaloshian I J Nematol; 2001 Jun; 33(2-3):116-20. PubMed ID: 19266006 [TBL] [Abstract][Full Text] [Related]
8. First report of Hajihassani A; Ye W; Hampton BB J Nematol; 2019; 51():1-3. PubMed ID: 31088018 [TBL] [Abstract][Full Text] [Related]
9. The impact of Mbaluto CM; Ahmad EM; Fu M; Martínez-Medina A; van Dam NM AoB Plants; 2020 Aug; 12(4):plaa029. PubMed ID: 32665829 [TBL] [Abstract][Full Text] [Related]
10. Glandular Trichome-Derived Mono- and Sesquiterpenes of Tomato Have Contrasting Roles in the Interaction with the Potato Aphid Macrosiphum euphorbiae. Wang F; Park YL; Gutensohn M J Chem Ecol; 2021 Feb; 47(2):204-214. PubMed ID: 33447946 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids. Rizzo E; Sherman T; Manosalva P; Gomez SK Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31936508 [TBL] [Abstract][Full Text] [Related]
18. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Atamian HS; Eulgem T; Kaloshian I Planta; 2012 Feb; 235(2):299-309. PubMed ID: 21898085 [TBL] [Abstract][Full Text] [Related]
19. Biocontrol efficacy of Hu Y; You J; Wang Y; Long Y; Wang S; Pan F; Yu Z Front Microbiol; 2022; 13():1035748. PubMed ID: 36483201 [TBL] [Abstract][Full Text] [Related]