These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33936429)

  • 1. Automatically classifying the evidence type of drug-drug interaction research papers as a step toward computer supported evidence curation.
    Hoang L; Boyce RD; Bosch N; Stottlemyer B; Brochhausen M; Schneider J
    AMIA Annu Symp Proc; 2020; 2020():554-563. PubMed ID: 33936429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug drug interaction extraction from the literature using a recursive neural network.
    Lim S; Lee K; Kang J
    PLoS One; 2018; 13(1):e0190926. PubMed ID: 29373599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions.
    Kolchinsky A; Lourenço A; Li L; Rocha LM
    Pac Symp Biocomput; 2013; ():409-20. PubMed ID: 23424145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach.
    Kim S; Liu H; Yeganova L; Wilbur WJ
    J Biomed Inform; 2015 Jun; 55():23-30. PubMed ID: 25796456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Text mining for pharmacovigilance: Using machine learning for drug name recognition and drug-drug interaction extraction and classification.
    Ben Abacha A; Chowdhury MFM; Karanasiou A; Mrabet Y; Lavelli A; Zweigenbaum P
    J Biomed Inform; 2015 Dec; 58():122-132. PubMed ID: 26432353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel feature-based approach to extract drug-drug interactions from biomedical text.
    Bui QC; Sloot PM; van Mulligen EM; Kors JA
    Bioinformatics; 2014 Dec; 30(23):3365-71. PubMed ID: 25143286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SubGE-DDI: A new prediction model for drug-drug interaction established through biomedical texts and drug-pairs knowledge subgraph enhancement.
    Shi Y; He M; Chen J; Han F; Cai Y
    PLoS Comput Biol; 2024 Apr; 20(4):e1011989. PubMed ID: 38626249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of pharmacokinetic evidence of drug-drug interactions from the literature.
    Kolchinsky A; Lourenço A; Wu HY; Li L; Rocha LM
    PLoS One; 2015; 10(5):e0122199. PubMed ID: 25961290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for predicting kidney stone type using ensemble learning.
    Kazemi Y; Mirroshandel SA
    Artif Intell Med; 2018 Jan; 84():117-126. PubMed ID: 29241659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning.
    Kastrin A; Ferk P; Leskošek B
    PLoS One; 2018; 13(5):e0196865. PubMed ID: 29738537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring convolutional neural networks for drug-drug interaction extraction.
    Suárez-Paniagua V; Segura-Bedmar I; Martínez P
    Database (Oxford); 2017 Jan; 2017():. PubMed ID: 28605776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies.
    Lamurias A; Sousa D; Clarke LA; Couto FM
    BMC Bioinformatics; 2019 Jan; 20(1):10. PubMed ID: 30616557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of discourse segment and experimental types from the text of cancer pathway results sections.
    Burns GA; Dasigi P; de Waard A; Hovy EH
    Database (Oxford); 2016; 2016():. PubMed ID: 27580922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-enabled natural language processing to identify directional pharmacokinetic drug-drug interactions.
    Zirkle J; Han X; Racz R; Samieegohar M; Chaturbedi A; Mann J; Chakravartula S; Li Z
    BMC Bioinformatics; 2023 Nov; 24(1):413. PubMed ID: 37914988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-Drug Interaction Extraction via Convolutional Neural Networks.
    Liu S; Tang B; Chen Q; Wang X
    Comput Math Methods Med; 2016; 2016():6918381. PubMed ID: 26941831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting drug-enzyme relation from literature as evidence for drug drug interaction.
    Zhang Y; Wu HY; Du J; Xu J; Wang J; Tao C; Li L; Xu H
    J Biomed Semantics; 2016; 7():11. PubMed ID: 26955465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of patients with invasive fungal disease from free-text computed tomography (CT) scans.
    Martinez D; Ananda-Rajah MR; Suominen H; Slavin MA; Thursky KA; Cavedon L
    J Biomed Inform; 2015 Feb; 53():251-60. PubMed ID: 25460203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths.
    Zhang Y; Zheng W; Lin H; Wang J; Yang Z; Dumontier M
    Bioinformatics; 2018 Mar; 34(5):828-835. PubMed ID: 29077847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.