These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33936455)
1. Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning. Mardini MT; Nerella S; Wanigatunga AA; Saldana S; Casanova R; Manini TM AMIA Annu Symp Proc; 2020; 2020():803-812. PubMed ID: 33936455 [TBL] [Abstract][Full Text] [Related]
2. Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning. Mardini MT; Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065906 [TBL] [Abstract][Full Text] [Related]
3. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults? Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM; Mardini MT Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459045 [TBL] [Abstract][Full Text] [Related]
4. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry. Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study. Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809 [TBL] [Abstract][Full Text] [Related]
7. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
8. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System. Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800 [TBL] [Abstract][Full Text] [Related]
9. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Montoye AHK; Begum M; Henning Z; Pfeiffer KA Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205 [TBL] [Abstract][Full Text] [Related]
10. Wrist accelerometer shape feature derivation methods for assessing activities of daily living. Kheirkhahan M; Chakraborty A; Wanigatunga AA; Corbett DB; Manini TM; Ranka S BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 4):124. PubMed ID: 30537957 [TBL] [Abstract][Full Text] [Related]
11. Validation of a wireless accelerometer network for energy expenditure measurement. Montoye AH; Dong B; Biswas S; Pfeiffer KA J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316 [TBL] [Abstract][Full Text] [Related]
12. Predicting children's energy expenditure during physical activity using deep learning and wearable sensor data. Hamid A; Duncan MJ; Eyre ELJ; Jing Y Eur J Sport Sci; 2021 Jun; 21(6):918-926. PubMed ID: 32597337 [TBL] [Abstract][Full Text] [Related]
13. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer. Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting. Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558 [TBL] [Abstract][Full Text] [Related]
15. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure. Imboden MT; Nelson MB; Kaminsky LA; Montoye AH Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930 [TBL] [Abstract][Full Text] [Related]
16. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. van Hees VT; Renström F; Wright A; Gradmark A; Catt M; Chen KY; Löf M; Bluck L; Pomeroy J; Wareham NJ; Ekelund U; Brage S; Franks PW PLoS One; 2011; 6(7):e22922. PubMed ID: 21829556 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Physical Activity in Adults Using Wrist Accelerometers. Liu F; Wanigatunga AA; Schrack JA Epidemiol Rev; 2022 Jan; 43(1):65-93. PubMed ID: 34215874 [TBL] [Abstract][Full Text] [Related]
18. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living. Montoye AH; Mudd LM; Biswas S; Pfeiffer KA Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392 [TBL] [Abstract][Full Text] [Related]
19. Measurement of Physical Activity by Shoe-Based Accelerometers-Calibration and Free-Living Validation. Fridolfsson J; Arvidsson D; Grau S Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810616 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance. Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713 [No Abstract] [Full Text] [Related] [Next] [New Search]