BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33936513)

  • 1. Predicting Tumor Cell Response to Synergistic Drug Combinations Using a Novel Simplified Deep Learning Model.
    Zhang H; Feng J; Zeng A; Payne P; Li F
    AMIA Annu Symp Proc; 2020; 2020():1364-1372. PubMed ID: 33936513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models.
    Zhang T; Zhang L; Payne PRO; Li F
    Methods Mol Biol; 2021; 2194():223-238. PubMed ID: 32926369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the relevance of major signaling pathways in cancer survival using a biologically meaningful deep learning model.
    Feng J; Zhang H; Li F
    BMC Bioinformatics; 2021 Feb; 22(1):47. PubMed ID: 33546587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting anticancer synergistic drug combinations based on multi-task learning.
    Chen D; Wang X; Zhu H; Jiang Y; Li Y; Liu Q; Liu Q
    BMC Bioinformatics; 2023 Nov; 24(1):448. PubMed ID: 38012551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive approaches for drug combination discovery in cancer.
    Madani Tonekaboni SA; Soltan Ghoraie L; Manem VSK; Haibe-Kains B
    Brief Bioinform; 2018 Mar; 19(2):263-276. PubMed ID: 27881431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor.
    Gan Y; Huang X; Guo W; Yan C; Zou G
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37812255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predict effective drug combination by deep belief network and ontology fingerprints.
    Chen G; Tsoi A; Xu H; Zheng WJ
    J Biomed Inform; 2018 Sep; 85():149-154. PubMed ID: 30081101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data.
    Celebi R; Bear Don't Walk O; Movva R; Alpsoy S; Dumontier M
    Sci Rep; 2019 Jun; 9(1):8949. PubMed ID: 31222109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug synergy model for malignant diseases using deep learning.
    Rani P; Dutta K; Kumar V
    J Bioinform Comput Biol; 2023 Jun; 21(3):2350014. PubMed ID: 37350313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy.
    Torkamannia A; Omidi Y; Ferdousi R
    Sci Rep; 2023 Apr; 13(1):6184. PubMed ID: 37061563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics Approaches for Anti-cancer Drug Discovery.
    Li K; Du Y; Li L; Wei DQ
    Curr Drug Targets; 2020; 21(1):3-17. PubMed ID: 31549592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DrugComboRanker: drug combination discovery based on target network analysis.
    Huang L; Li F; Sheng J; Xia X; Ma J; Zhan M; Wong ST
    Bioinformatics; 2014 Jun; 30(12):i228-36. PubMed ID: 24931988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction.
    Huang L; Brunell D; Stephan C; Mancuso J; Yu X; He B; Thompson TC; Zinner R; Kim J; Davies P; Wong STC
    Bioinformatics; 2019 Oct; 35(19):3709-3717. PubMed ID: 30768150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies.
    Xu J; Regan-Fendt K; Deng S; Carson WE; Payne PRO; Li F
    Pac Symp Biocomput; 2018; 23():92-103. PubMed ID: 29218872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction.
    Shim Y; Lee M; Kim PJ; Kim HG
    BMC Bioinformatics; 2022 May; 23(1):163. PubMed ID: 35513784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.