BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 33937184)

  • 1. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry.
    Levine M
    Front Chem; 2021; 9():616815. PubMed ID: 33937184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Fluorescent Sensors: An Historical Overview and Update.
    Guo C; Sedgwick AC; Hirao T; Sessler JL
    Coord Chem Rev; 2021 Jan; 427():. PubMed ID: 34108734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles.
    Liu P; Zhao M; Zhu H; Zhang M; Li X; Wang M; Liu B; Pan J; Niu X
    J Hazard Mater; 2022 Feb; 423(Pt A):127077. PubMed ID: 34482084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pillararene-Inspired Macrocycles: From Extended Pillar[
    Wu JR; Wu G; Yang YW
    Acc Chem Res; 2022 Nov; 55(21):3191-3204. PubMed ID: 36265167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms.
    Yousefi R; Asgari S; Banitalebi Dehkordi A; Mohammadi Ziarani G; Badiei A; Mohajer F; Varma RS; Iravani S
    Environ Res; 2023 Jun; 226():115664. PubMed ID: 36913998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular-Macrocycle-Based Crystalline Organic Materials.
    Zhou Y; Jie K; Zhao R; Huang F
    Adv Mater; 2020 May; 32(20):e1904824. PubMed ID: 31535778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recent developments of pesticide adsorbents based on cyclodextrins].
    Zhang J; Li P; Ma J; Jia Q
    Se Pu; 2021 Feb; 39(2):173-183. PubMed ID: 34227350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides.
    Zhang X; Liao X; Hou Y; Jia B; Fu L; Jia M; Zhou L; Lu J; Kong W
    J Hazard Mater; 2022 Jan; 422():126881. PubMed ID: 34449329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in immunosensors for pesticides.
    Fang L; Liao X; Jia B; Shi L; Kang L; Zhou L; Kong W
    Biosens Bioelectron; 2020 Sep; 164():112255. PubMed ID: 32479338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology-based recent approaches for sensing and remediation of pesticides.
    Rawtani D; Khatri N; Tyagi S; Pandey G
    J Environ Manage; 2018 Jan; 206():749-762. PubMed ID: 29161677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores.
    Shao L; Hua B; Zhao X; Lu S; Li G
    Chemistry; 2023 Dec; 29(71):e202303071. PubMed ID: 37843981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General Method for Pesticide Recognition Using Albumin-Based Host-Guest Ensembles.
    Qin T; Zhao X; Lv T; Yao G; Xu Z; Wang L; Zhao C; Xu H; Liu B; Peng X
    ACS Sens; 2022 Jul; 7(7):2020-2027. PubMed ID: 35776632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications.
    Guo DS; Liu Y
    Acc Chem Res; 2014 Jul; 47(7):1925-34. PubMed ID: 24666259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments.
    Issaka E; Wariboko MA; Johnson NAN; Aniagyei ON
    Heliyon; 2023 Mar; 9(3):e13986. PubMed ID: 36915503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms.
    Song J; Chen Y; Li L; Tan M; Su W
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review.
    Zhai R; Chen G; Liu G; Huang X; Xu X; Li L; Zhang Y; Wang J; Jin M; Xu D; Abd El-Aty AM
    J Adv Res; 2022 Mar; 37():61-74. PubMed ID: 35499055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping agricultural use of pesticides to enable research and environmental health actions in Belgium.
    Habran S; Philippart C; Jacquemin P; Remy S
    Environ Pollut; 2022 May; 301():119018. PubMed ID: 35182653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection.
    Gopal G; Roy N; Mukherjee A
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.