These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 33937184)

  • 41. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides.
    Bapat G; Labade C; Chaudhari A; Zinjarde S
    Adv Colloid Interface Sci; 2016 Nov; 237():1-14. PubMed ID: 27780560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FRET-Based Host-Guest Supramolecular Probe for On-Site and Broad-Spectrum Detection of Pyrethroids in the Environment.
    Jia T; Tang H; Qin T; Zhang Y; Huang Y; Xun Z; Liu B; Zhang Z; Xu H; Zhao C
    J Agric Food Chem; 2024 Feb; 72(7):3773-3782. PubMed ID: 38329040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosensor technology for pesticides--a review.
    Verma N; Bhardwaj A
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3093-119. PubMed ID: 25595494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monitoring of organophosphorus pesticide residues in plant and vegetable tissues by a novel silver nanocluster probe.
    Mu X; Wang Y; Qian B; Liu G; Xu J; Zeng F
    Anal Methods; 2023 Feb; 15(6):762-770. PubMed ID: 36661345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soft Materials Constructed Using Calix[4]pyrrole- and "Texas-Sized" Box-Based Anion Receptors.
    Ji X; Chi X; Ahmed M; Long L; Sessler JL
    Acc Chem Res; 2019 Jul; 52(7):1915-1927. PubMed ID: 31184471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multienzyme-Targeted Fluorescent Probe as a Biosensing Platform for Broad Detection of Pesticide Residues.
    Guo WY; Fu YX; Liu SY; Mei LC; Sun Y; Yin J; Yang WC; Yang GF
    Anal Chem; 2021 May; 93(18):7079-7085. PubMed ID: 33906355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation.
    Banerjee D; Adhikary S; Bhattacharya S; Chakraborty A; Dutta S; Chatterjee S; Ganguly A; Nanda S; Rajak P
    Environ Res; 2024 Jan; 241():117601. PubMed ID: 37977271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pillararene-Based Supramolecular Polymers for Adsorption and Separation.
    Wang ZQ; Wang X; Yang YW
    Adv Mater; 2024 Jan; 36(4):e2301721. PubMed ID: 36938788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photostimulus-Responsive Peptide Dot-Centered Covalent Organic Polymers: Effective Pesticide Sensing via Enhancing Accessibility.
    Zhang Y; Zhang D; Liu H; Sun B
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14208-14217. PubMed ID: 38445958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry.
    Li P; Jia Y; Chen P
    Chemistry; 2023 Sep; 29(54):e202300300. PubMed ID: 37439485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors.
    Chen Z; Wang Q; Wu X; Li Z; Jiang YB
    Chem Soc Rev; 2015 Jul; 44(13):4249-63. PubMed ID: 25714523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A prospective cohort study of school-going children investigating reproductive and neurobehavioral health effects due to environmental pesticide exposure in the Western Cape, South Africa: study protocol.
    Chetty-Mhlanga S; Basera W; Fuhrimann S; Probst-Hensch N; Delport S; Mugari M; Van Wyk J; Röösli M; Dalvie MA
    BMC Public Health; 2018 Jul; 18(1):857. PubMed ID: 29996806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection of Organochlorine Pesticides in Contaminated Marine Environments via Cyclodextrin-Promoted Fluorescence Modulation.
    DiScenza DJ; Lynch J; Miller J; Verderame M; Levine M
    ACS Omega; 2017 Dec; 2(12):8591-8599. PubMed ID: 30023587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Advances in application of molecularly imprinted polymers to the detection of polar pesticide residues].
    Li T; Chang M; Shi X; Xu G
    Se Pu; 2021 Sep; 39(9):930-940. PubMed ID: 34486832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Progress in preparation of plant biomass-derived biochar and application in pesticide residues field].
    Zhang X; Zhen D; Liu F; Peng Q; Wang Z
    Se Pu; 2022 Jun; 40(6):499-508. PubMed ID: 35616195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects.
    Sohrabi H; Arbabzadeh O; Falaki M; Majidi MR; Han N; Yoon Y; Khataee A
    Food Chem Toxicol; 2022 Jun; 164():113010. PubMed ID: 35421544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.
    Wu Z; Song N; Menz R; Pingali B; Yang YW; Zheng Y
    Nanomedicine (Lond); 2015 May; 10(9):1493-514. PubMed ID: 25996121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of pesticide residue chemistry to improving food and environmental safety: past and present accomplishments and future challenges.
    Seiber JN; Kleinschmidt LA
    J Agric Food Chem; 2011 Jul; 59(14):7536-43. PubMed ID: 21473621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review.
    Sradha S A; George L; P K; Varghese A
    Crit Rev Toxicol; 2022 Jul; 52(6):431-448. PubMed ID: 36178423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzyme assays with supramolecular chemosensors - the label-free approach.
    Nilam M; Hennig A
    RSC Adv; 2022 Mar; 12(17):10725-10748. PubMed ID: 35425010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.