These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 33937184)

  • 61. Enzyme assays with supramolecular chemosensors - the label-free approach.
    Nilam M; Hennig A
    RSC Adv; 2022 Mar; 12(17):10725-10748. PubMed ID: 35425010
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in anion supramolecular chemistry: from recognition to chemical applications.
    Evans NH; Beer PD
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11716-54. PubMed ID: 25204549
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional supramolecular gels based on pillar[n]arene macrocycles.
    Li YF; Li Z; Lin Q; Yang YW
    Nanoscale; 2020 Jan; 12(4):2180-2200. PubMed ID: 31916548
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantum chemistry in environmental pesticide risk assessment.
    Villaverde JJ; López-Goti C; Alcamí M; Lamsabhi AM; Alonso-Prados JL; Sandín-España P
    Pest Manag Sci; 2017 Nov; 73(11):2199-2202. PubMed ID: 28618212
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recent Developments of Fluorescence Sensors Constructed from Pillar[
    Li X; Jin Y; Zhu N; Yin J; Jin LY
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475066
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms.
    Ding L; Guo J; Chen S; Wang Y
    Talanta; 2024 Jun; 273():125937. PubMed ID: 38503124
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fluorescence assay for three organophosphorus pesticides in agricultural products based on Magnetic-Assisted fluorescence labeling aptamer probe.
    Jiang M; Chen C; He J; Zhang H; Xu Z
    Food Chem; 2020 Mar; 307():125534. PubMed ID: 31644980
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Agriculture Development, Pesticide Application and Its Impact on the Environment.
    Tudi M; Daniel Ruan H; Wang L; Lyu J; Sadler R; Connell D; Chu C; Phung DT
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33513796
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficient synthesis of a fluorescent tripod detection system for pesticides by microwave-assisted click chemistry.
    Mallard-Favier I; Blach P; Cazier F; Delattre F
    Carbohydr Res; 2009 Jan; 344(2):161-6. PubMed ID: 18992875
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A high-performance Calix@ZnO based bifunctional nanomaterial for selective detection and degradation of toxic azinphos methyl in environmental samples.
    Kaur R; Bhardwaj G; Saini S; Kaur N; Singh N
    Chemosphere; 2023 Mar; 316():137693. PubMed ID: 36638927
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantity based indicators fail to identify extreme pesticide risks.
    Möhring N; Gaba S; Finger R
    Sci Total Environ; 2019 Jan; 646():503-523. PubMed ID: 30056237
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Recent advances in the use of graphene for sample preparation].
    Feng J; Sun M; Feng Y; Xin X; Ding Y; Sun M
    Se Pu; 2022 Nov; 40(11):953-965. PubMed ID: 36351804
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Macrocycle-Based Solid-State Supramolecular Polymers.
    Hua B; Shao L; Li M; Liang H; Huang F
    Acc Chem Res; 2022 Apr; 55(7):1025-1034. PubMed ID: 35321546
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry.
    Lou XY; Song N; Yang YW
    Molecules; 2017 Sep; 22(10):. PubMed ID: 28961213
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular Dynamics Insights for Screening the Ability of Polymers to Remove Pesticides from Water.
    Estrada FGA; Marques JMC; Valente AJM
    ChemistryOpen; 2019 Apr; 8(4):438-446. PubMed ID: 30989013
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Halogen bonding and chalcogen bonding mediated sensing.
    Hein R; Beer PD
    Chem Sci; 2022 Jun; 13(24):7098-7125. PubMed ID: 35799814
    [TBL] [Abstract][Full Text] [Related]  

  • 77. DNA as an environmental sensor: detection and identification of pesticide contaminants in water with fluorescent nucleobases.
    Kwon H; Chan KM; Kool ET
    Org Biomol Chem; 2017 Feb; 15(8):1801-1809. PubMed ID: 28150837
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Supramolecular nanotheranostics based on pillarenes.
    Song N; Lou XY; Ma L; Gao H; Yang YW
    Theranostics; 2019; 9(11):3075-3093. PubMed ID: 31244942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides.
    Gupta T; Ratandeep ; Dutt M; Kaur B; Punia S; Sharma S; Sahu PK; Pooja ; Saya L
    Talanta; 2024 May; 272():125748. PubMed ID: 38364558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-biological fluorescent chemosensors for pesticides detection.
    Yang J; Chen SW; Zhang B; Tu Q; Wang J; Yuan MS
    Talanta; 2022 Apr; 240():123200. PubMed ID: 35030438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.