These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33937206)

  • 1. Diketopyrrolopyrrole Based Organic Semiconductor Materials for Field-Effect Transistors.
    Zou X; Cui S; Li J; Wei X; Zheng M
    Front Chem; 2021; 9():671294. PubMed ID: 33937206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diketopyrrolopyrrole (DPP)-Based Materials and Its Applications: A Review.
    Bao WW; Li R; Dai ZC; Tang J; Shi X; Geng JT; Deng ZF; Hua J
    Front Chem; 2020; 8():679. PubMed ID: 33134242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Design Concept for Enhancement Charge Carrier Mobility in OFETs: A Review.
    Zhou Y; Zhang K; Chen Z; Zhang H
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic semiconductors for organic field-effect transistors.
    Yamashita Y
    Sci Technol Adv Mater; 2009 Apr; 10(2):024313. PubMed ID: 27877286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors.
    Lei Y; Deng P; Li J; Lin M; Zhu F; Ng TW; Lee CS; Ong BS
    Sci Rep; 2016 Apr; 6():24476. PubMed ID: 27091315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Thienyl DPP derivatives Functionalized with Terminal Electron-Acceptor Groups: Synthesis, Optical Properties and OFET Performance.
    Fusco S; Barra M; Gontrani L; Bonomo M; Chianese F; Galliano S; Centore R; Cassinese A; Carbone M; Carella A
    Chemistry; 2022 May; 28(25):e202104552. PubMed ID: 35244293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic character of charge transport parameters in disordered organic semiconductor field-effect transistors.
    Chen Y; Lee B; Yi HT; Lee SS; Payne MM; Pola S; Kuo CH; Loo YL; Anthony JE; Tao YT; Podzorov V
    Phys Chem Chem Phys; 2012 Nov; 14(41):14142-51. PubMed ID: 22868385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended conjugated donor-acceptor molecules with E-(1,2-difluorovinyl) and diketopyrrolopyrrole (DPP) moieties toward high-performance ambipolar organic semiconductors.
    Cai Z; Luo H; Chen X; Zhang G; Liu Z; Zhang D
    Chem Asian J; 2014 Apr; 9(4):1068-75. PubMed ID: 24458442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of High-Mobility Diketopyrrolopyrrole-Based π-Conjugated Copolymers for Organic Thin-Film Transistors.
    Yi Z; Wang S; Liu Y
    Adv Mater; 2015 Jun; 27(24):3589-606. PubMed ID: 25980990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells.
    Zhou Y; Zhang W; Yu G
    Chem Sci; 2021 May; 12(20):6844-6878. PubMed ID: 34123315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors.
    Kanimozhi C; Yaacobi-Gross N; Chou KW; Amassian A; Anthopoulos TD; Patil S
    J Am Chem Soc; 2012 Oct; 134(40):16532-5. PubMed ID: 23017114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance organic field-effect transistors: molecular design, device fabrication, and physical properties.
    Di CA; Yu G; Liu Y; Zhu D
    J Phys Chem B; 2007 Dec; 111(51):14083-96. PubMed ID: 18052267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of Organic Conjugated Molecules for High-Performance Device Applications.
    Memon WA; Zhang Y; Zhang J; Yan Y; Wang Y; Wei Z
    Macromol Rapid Commun; 2022 Jul; 43(14):e2100931. PubMed ID: 35338681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diketopyrrolopyrrole-thiophene-based acceptor-donor-acceptor conjugated materials for high-performance field-effect transistors.
    Lu C; Chen WC
    Chem Asian J; 2013 Nov; 8(11):2813-21. PubMed ID: 23922333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, and application in OFET of a small molecule based on π-expanded fused diketopyrrolopyrrole.
    Li J; Ji Z; He A; Zhang H
    Front Chem; 2023; 11():1280816. PubMed ID: 37876853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.
    Takimiya K; Osaka I; Mori T; Nakano M
    Acc Chem Res; 2014 May; 47(5):1493-502. PubMed ID: 24785263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.