These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33938013)

  • 1. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells.
    Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA
    Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Monitoring of Dissection Events of Single Budding Yeast in a Microfluidic Cell-Culturing Device Integrated With Electrical Impedance Biosensor.
    Zhu Z; Geng Y; Wang Y; Liu K; Yi Z; Zhao X; Ouyang S; Zheng K; Fan Y; Wang Z
    Front Bioeng Biotechnol; 2021; 9():783428. PubMed ID: 34778241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination.
    Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA
    J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material.
    Chmayssem A; Tanase CE; Verplanck N; Gougis M; Mourier V; Zebda A; Ghaemmaghami AM; Mailley P
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device.
    Zhu Z; Geng Y; Wang Y
    Methods Mol Biol; 2021; 2189():105-118. PubMed ID: 33180297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy.
    Zhu Z; Frey O; Franke F; Haandbæk N; Hierlemann A
    Anal Bioanal Chem; 2014 Nov; 406(27):7015-25. PubMed ID: 25012351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform.
    Yu R; Jo MC; Dang W
    Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost Impedance Camera for Cell Distribution Monitoring.
    Tang B; Liu M; Dietzel A
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization.
    Fang Q; Feng Y; Zhu J; Huang L; Wang W
    Anal Chem; 2023 Apr; 95(15):6374-6382. PubMed ID: 36996369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells.
    Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H
    Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array.
    Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H
    Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic single-cell array for in situ laminar-flow-based comparative culturing of budding yeast cells.
    Zhu Z; Wang Y; Peng R; Chen P; Geng Y; He B; Ouyang S; Zheng K; Fan Y; Pan D; Jin N; Rudolf F; Hierlemann A
    Talanta; 2021 Aug; 231():122401. PubMed ID: 33965050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.