These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 33938013)

  • 1. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells.
    Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA
    Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells.
    Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design.
    Wu G; Zhang Z; Du M; Wu D; Zhou J; Hao T; Xie X
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput tracking of single yeast cells in a microfluidic imaging matrix.
    Falconnet D; Niemistö A; Taylor RJ; Ricicova M; Galitski T; Shmulevich I; Hansen CL
    Lab Chip; 2011 Feb; 11(3):466-73. PubMed ID: 21088765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic technologies for yeast replicative lifespan studies.
    Chen KL; Crane MM; Kaeberlein M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):262-269. PubMed ID: 27015709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic impedance cytometry with flat-end cylindrical electrodes for accurate and fast analysis of marine microalgae.
    Chen X; Shen M; Liu S; Wu C; Sun L; Song Z; Shi J; Yuan Y; Zhao Y
    Lab Chip; 2024 Mar; 24(7):2058-2068. PubMed ID: 38436397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Simulation of the Impedance Response of a Vascular Segment as a Function of Changes in Electrode Configuration.
    Amini M; Kalvøy H; Martinsen ØG
    J Electr Bioimpedance; 2020 Jan; 11(1):112-131. PubMed ID: 33584912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells.
    Crowell LL; Yakisich JS; Aufderheide B; Adams TNG
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoplastic microfluidic bioreactors with integrated electrodes to study tumor treating fields on yeast cells.
    Gencturk E; Ulgen KO; Mutlu S
    Biomicrofluidics; 2020 May; 14(3):034104. PubMed ID: 32477443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the role of impedance spectroscopy in assessing 405 nm laser-induced inactivation of saccharomyces cerevisiae.
    Ang BJ; Suardi N; Ong EBB; Khasim SNH; Gemanam SJ; Mustafa IS; Fong JH
    Photochem Photobiol Sci; 2024 May; 23(5):931-940. PubMed ID: 38592591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical impedance spectroscopy (EIS) in plant roots research: a review.
    Liu Y; Li D; Qian J; Di B; Zhang G; Ren Z
    Plant Methods; 2021 Nov; 17(1):118. PubMed ID: 34774075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces Cerevisiae as a Model Organism for Retrospective Impedance Biodosimetry.
    Hassan A; Atkinson KD
    Health Phys; 2024 May; 126(5):272-279. PubMed ID: 38526245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell growth monitoring in a tetrapolar electrode configuration.
    Singh J; Khambete ND
    J Electr Bioimpedance; 2024 Jan; 15(1):85-88. PubMed ID: 38962505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and optimization of an octuple-electrode array for micro-particle chain rotation
    Huan Z; Chen Z; Zheng X; Zhang Y; Zhang J; Ma W
    Analyst; 2024 Jun; 149(12):3346-3355. PubMed ID: 38700251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel.
    Kang G; Kim YJ; Moon HS; Lee JW; Yoo TK; Park K; Lee JH
    Biomicrofluidics; 2013; 7(4):44126. PubMed ID: 24404059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the future of electrical impedance spectroscopy in flow cytometry?
    Gökçe F; Ravaynia PS; Modena MM; Hierlemann A
    Biomicrofluidics; 2021 Dec; 15(6):061302. PubMed ID: 34917226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling single cell electrical stimulation and response recording via a microfluidic platform.
    Ni L; Kc P; Zhang G; Zhe J
    Biomicrofluidics; 2019 Nov; 13(6):064126. PubMed ID: 31867086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.