BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33938389)

  • 1. Completion of the gut microbial epi-bile acid pathway.
    Doden HL; Wolf PG; Gaskins HR; Anantharaman K; Alves JMP; Ridlon JM
    Gut Microbes; 2021; 13(1):1-20. PubMed ID: 33938389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.
    Doden H; Sallam LA; Devendran S; Ly L; Doden G; Daniel SL; Alves JMP; Ridlon JM
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence.
    Mythen SM; Devendran S; Méndez-García C; Cann I; Ridlon JM
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243
    Harris SC; Devendran S; Méndez-García C; Mythen SM; Wright CL; Fields CJ; Hernandez AG; Cann I; Hylemon PB; Ridlon JM
    Gut Microbes; 2018 Nov; 9(6):523-539. PubMed ID: 29617190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum.
    Ferrandi EE; Bertolesi GM; Polentini F; Negri A; Riva S; Monti D
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1221-33. PubMed ID: 22198717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271.
    Ridlon JM; Kang DJ; Hylemon PB
    Anaerobe; 2010 Apr; 16(2):137-46. PubMed ID: 19464381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile salt degradation by nonfermentative clostridia.
    Mahony DE; Meier CE; Macdonald IA; Holdeman LV
    Appl Environ Microbiol; 1977 Oct; 34(4):419-23. PubMed ID: 921266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics.
    Song C; Wang B; Tan J; Zhu L; Lou D
    Sci Rep; 2017 Apr; 7():45495. PubMed ID: 28436439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bile acid oxazoline derivatives on microorganisms participating in 7 alpha-hydroxyl epimerization of primary bile acids.
    Macdonald IA; Sutherland JD; Cohen BI; Mosbach EH
    J Lipid Res; 1983 Dec; 24(12):1550-9. PubMed ID: 6366102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, expression, and biochemical characterization of a novel NADP
    Bakonyi D; Hummel W
    Enzyme Microb Technol; 2017 Apr; 99():16-24. PubMed ID: 28193327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of NADP
    Wang R; Wu J; Jin DK; Chen Y; Lv Z; Chen Q; Miao Q; Huo X; Wang F
    Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):246-252. PubMed ID: 28471355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthomonas maltophilia CBS 897.97 as a source of new 7beta- and 7alpha-hydroxysteroid dehydrogenases and cholylglycine hydrolase: improved biotransformations of bile acids.
    Pedrini P; Andreotti E; Guerrini A; Dean M; Fantin G; Giovannini PP
    Steroids; 2006 Mar; 71(3):189-98. PubMed ID: 16307764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens.
    Liu L; Aigner A; Schmid RD
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):127-35. PubMed ID: 21181147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stereospecificity of 3 alpha- and 12 alpha-bile salt hydroxysteroid dehydrogenase systems from four microbial sources.
    Macdonald IA; Chang FC
    Enzyme; 1982; 28(4):392-5. PubMed ID: 6961034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic routes for the synthesis of ursodeoxycholic acid.
    Eggert T; Bakonyi D; Hummel W
    J Biotechnol; 2014 Dec; 191():11-21. PubMed ID: 25131646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel NADP(H)-dependent 3α-HSDH from the intestinal microbiome of Ursus thibetanus.
    Lou D; Zhang X; Cao Y; Zhou Z; Liu C; Kuang G; Tan J; Zhu L
    Int J Biol Macromol; 2022 Oct; 219():159-165. PubMed ID: 35934074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl-terminal and Arg38 are essential for activity of the 7α-hydroxysteroid dehydrogenase from Clostridium absonum.
    Lou D; Wang B; Tan J; Zhu L
    Protein Pept Lett; 2014; 21(9):894-900. PubMed ID: 24810359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon.
    Lee JY; Arai H; Nakamura Y; Fukiya S; Wada M; Yokota A
    J Lipid Res; 2013 Nov; 54(11):3062-9. PubMed ID: 23729502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c.
    Edenharder R; Pfützner M; Hammann R
    Biochim Biophys Acta; 1989 Mar; 1002(1):37-44. PubMed ID: 2923864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The '
    Ridlon JM; Devendran S; Alves JM; Doden H; Wolf PG; Pereira GV; Ly L; Volland A; Takei H; Nittono H; Murai T; Kurosawa T; Chlipala GE; Green SJ; Hernandez AG; Fields CJ; Wright CL; Kakiyama G; Cann I; Kashyap P; McCracken V; Gaskins HR
    Gut Microbes; 2020 May; 11(3):381-404. PubMed ID: 31177942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.