These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33938616)

  • 1. Exploiting Transient Radical Cations as Brønsted Acids for Allylic C-H Heteroarylation of Enol Silyl Ethers.
    Nakashima T; Fujimori H; Ohmatsu K; Ooi T
    Chemistry; 2021 Jun; 27(36):9253-9256. PubMed ID: 33938616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct allylic C-H alkylation of enol silyl ethers enabled by photoredox-Brønsted base hybrid catalysis.
    Ohmatsu K; Nakashima T; Sato M; Ooi T
    Nat Commun; 2019 Jun; 10(1):2706. PubMed ID: 31221955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mannich-type allylic C-H functionalization of enol silyl ethers under photoredox-thiol hybrid catalysis.
    Nakashima T; Ohmatsu K; Ooi T
    Org Biomol Chem; 2021 Jan; 19(1):141-145. PubMed ID: 33016971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Nitration of Ketones via Enol Silyl Ethers. Radical Cations as Reactive Intermediates in Thermal and Photochemical Processes.
    Rathore R; Kochi JK
    J Org Chem; 1996 Jan; 61(2):627-639. PubMed ID: 11666984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Brønsted acid from a cationic gold(I) complex: catalytic enantioselective protonation of silyl enol ethers of ketones.
    Cheon CH; Kanno O; Toste FD
    J Am Chem Soc; 2011 Aug; 133(34):13248-51. PubMed ID: 21815666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 1,4-Dicarbonyl Compounds from Silyl Enol Ethers and Bromocarbonyls, Catalyzed by an Organic Dye under Visible-Light Irradiation with Perfect Selectivity for the Halide Moiety over the Carbonyl Group.
    Esumi N; Suzuki K; Nishimoto Y; Yasuda M
    Org Lett; 2016 Nov; 18(21):5704-5707. PubMed ID: 27779410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latent Pronucleophiles in Lewis Base Catalysis: Enantioselective Allylation of Silyl Enol Ethers with Allylic Fluorides.
    Kumar S; Lange M; Zi Y; Görls H; Vilotijevic I
    Chemistry; 2023 Jul; 29(37):e202300641. PubMed ID: 37052175
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Dulov DA; Bogdanov AV; Dorofeev SG; Magdesieva TV
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the chemical space of enol silyl ethers: catalytic dicarbofunctionalization enabled by iron catalysis.
    Sar D; Yin S; Grygus J; Rentería-Gómez Á; Garcia M; Gutierrez O
    Chem Sci; 2023 Nov; 14(45):13007-13013. PubMed ID: 38023494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystallographic structure of a Lewis acid-assisted chiral Brønsted acid as an enantioselective protonation reagent for silyl enol ethers.
    Ishihara K; Nakashima D; Hiraiwa Y; Yamamoto H
    J Am Chem Soc; 2003 Jan; 125(1):24-5. PubMed ID: 12515493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lewis acid-catalyzed nucleophilic substitutions of propargylic and allylic silyl ethers with enol silyl ethers.
    Ishikawa T; Aikawa T; Mori Y; Saito S
    Org Lett; 2003 Jan; 5(1):51-4. PubMed ID: 12509888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis.
    Liu K; Studer A
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202206533. PubMed ID: 35656716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers.
    Parasram M; Chuentragool P; Sarkar D; Gevorgyan V
    J Am Chem Soc; 2016 May; 138(20):6340-3. PubMed ID: 27149524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Oxidation of Vinyl Ethers and Silyl Enol Ethers with Hydrogen Peroxide Catalyzed by Peroxotungstophosphate.
    Yamamoto H; Tsuda M; Sakaguchi S; Ishii Y
    J Org Chem; 1997 Oct; 62(21):7174-7177. PubMed ID: 11671823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible-Light-Promoted Oxidative [4 + 2] Cycloadditions of Aryl Silyl Enol Ethers.
    Yang B; Lu Z
    J Org Chem; 2016 Aug; 81(16):7288-300. PubMed ID: 27391768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct transformation of silyl enol ethers into functionalized allenes.
    Langer P; Döring M; Seyferth D; Görls H
    Chemistry; 2001 Feb; 7(3):573-84. PubMed ID: 11261654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile access to bicyclo[2.1.1]hexanes by Lewis acid-catalyzed formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes.
    Hu S; Pan Y; Ni D; Deng L
    Nat Commun; 2024 Jul; 15(1):6128. PubMed ID: 39033172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Heteroarylation of Thioethers via Photoredox and Weak Brønsted Base Catalysis.
    Alfonzo E; Hande SM
    Org Lett; 2021 Aug; 23(15):6115-6120. PubMed ID: 34297584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular [1,4]-S- to O-silyl migration: a useful strategy for synthesizing Z-silyl enol ethers with diverse thioether linkages.
    Sun C; Zhang Y; Xiao P; Li H; Sun X; Song Z
    Org Lett; 2014 Feb; 16(3):984-7. PubMed ID: 24467633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique diastereoselectivity trends in aminyl radical cyclizations onto silyl enol ethers.
    Zlotorzynska M; Zhai H; Sammis GM
    J Org Chem; 2010 Feb; 75(3):864-72. PubMed ID: 20043630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.