These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33938809)

  • 1. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study.
    Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I
    Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.
    Montoye AHK; Begum M; Henning Z; Pfeiffer KA
    Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults?
    Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM; Mardini MT
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting children's energy expenditure during physical activity using deep learning and wearable sensor data.
    Hamid A; Duncan MJ; Eyre ELJ; Jing Y
    Eur J Sport Sci; 2021 Jun; 21(6):918-926. PubMed ID: 32597337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning.
    Mardini MT; Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triaxial accelerometer output predicts oxygen uptake in adults with Down syndrome.
    Allred AT; Choi P; Agiovlasitis S
    Disabil Rehabil; 2021 Sep; 43(18):2602-2609. PubMed ID: 31880164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    AIMS Public Health; 2016; 3(2):298-312. PubMed ID: 29546164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites.
    Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE
    Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Adult Pulmonary Ventilation Volume and Wearing Compliance by On-Board Accelerometry During Personal Level Exposure Assessments.
    Rodes CE; Chillrud SN; Haskell WL; Intille SS; Albinali F; Rosenberger M
    Atmos Environ (1994); 2012 Sep; 57():126-137. PubMed ID: 24065872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure estimation during activities of daily living in middle-aged and older adults using an accelerometer integrated into a hearing aid.
    Stutz J; Eichenberger PA; Stumpf N; Knobel SEJ; Herbert NC; Hirzel I; Huber S; Oetiker C; Urry E; Lambercy O; Spengler CM
    Front Digit Health; 2024; 6():1400535. PubMed ID: 38952746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.