These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33939199)

  • 21. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-Area Nanogap-Controlled 3D Nanoarchitectures Fabricated
    Zhao ZJ; Ahn J; Hwang SH; Ko J; Jeong Y; Bok M; Kang HJ; Choi J; Jeon S; Park I; Jeong JH
    ACS Nano; 2021 Jan; 15(1):503-514. PubMed ID: 33439612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of single-nanometer metallic gaps via spontaneous nanoscale dewetting.
    Zeng P; Shu Z; Zhang S; Liang H; Zhou Y; Ba D; Feng Z; Zheng M; Wu J; Chen Y; Duan H
    Nanotechnology; 2021 May; 32(20):205302. PubMed ID: 33571970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures.
    Zaretski AV; Marin BC; Moetazedi H; Dill TJ; Jibril L; Kong C; Tao AR; Lipomi DJ
    Nano Lett; 2015 Jan; 15(1):635-40. PubMed ID: 25555061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric Nanofractures Determined the Nonreciprocal Peeling for Self-Aligned Heterostructure Nanogaps and Devices.
    Shu Z; Chen Y; Feng Z; Liang H; Li W; Liu Y; Duan H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1718-1726. PubMed ID: 34978176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing.
    Gu P; Zhou Z; Zhao Z; Möhwald H; Li C; Chiechi RC; Shi Z; Zhang G
    Nanoscale; 2019 Feb; 11(8):3583-3590. PubMed ID: 30729970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition.
    Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate.
    Liu W; Shen Y; Xiao G; She X; Wang J; Jin C
    Nanotechnology; 2017 Jan; 28(7):075301. PubMed ID: 28074781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic Hybrids of MoS
    Yang Y; Pan R; Tian S; Gu C; Li J
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biologically-Inspired Water-Swelling-Driven Fabrication of Centimeter-Level Metallic Nanogaps.
    Wang L; Wang Y; Dai M; Zhao Q; Wang X
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34201444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crack-Defined Electronic Nanogaps.
    Dubois V; Niklaus F; Stemme G
    Adv Mater; 2016 Mar; 28(11):2178-82. PubMed ID: 26784270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Batch fabrication of gold-gold nanogaps by E-beam lithography and electrochemical deposition.
    Wu Y; Hong W; Akiyama T; Gautsch S; Kolivoska V; Wandlowski T; de Rooij NF
    Nanotechnology; 2013 Jun; 24(23):235302. PubMed ID: 23676659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers.
    Xiang Q; Li Z; Zheng M; Liu Q; Chen Y; Yang L; Jiang T; Duan H
    Nanotechnology; 2018 Mar; 29(10):105301. PubMed ID: 29319003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-Dimensional Electrochemical Axial Lithography on Si Micro- and Nanowire Arrays.
    Wendisch FJ; Saller MS; Eadie A; Reyer A; Musso M; Rey M; Vogel N; Diwald O; Bourret GR
    Nano Lett; 2018 Nov; 18(11):7343-7349. PubMed ID: 30359028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions.
    Zhou ZK; Xue J; Zheng Z; Li J; Ke Y; Yu Y; Han JB; Xie W; Deng S; Chen H; Wang X
    Nanoscale; 2015 Oct; 7(37):15392-403. PubMed ID: 26335388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement.
    Flauraud V; Regmi R; Winkler PM; Alexander DT; Rigneault H; van Hulst NF; García-Parajo MF; Wenger J; Brugger J
    Nano Lett; 2017 Mar; 17(3):1703-1710. PubMed ID: 28182429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale patterning of plasmonic metamaterials.
    Henzie J; Lee MH; Odom TW
    Nat Nanotechnol; 2007 Sep; 2(9):549-54. PubMed ID: 18654366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.