BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33939401)

  • 21. Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application.
    Pandey S; Kumari S; Manohar Aeshala L; Singh S
    J Biomater Appl; 2024 Feb; 38(7):866-874. PubMed ID: 38173143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro.
    Zhai JH; Wu Y; Wang XY; Cao Y; Xu K; Xu L; Guo Y
    Med Sci Monit; 2016 Oct; 22():3792-3797. PubMed ID: 27752033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications.
    Dhall A; Self W
    Antioxidants (Basel); 2018 Jul; 7(8):. PubMed ID: 30042320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceria Nanoparticles Fabricated with 6-Aminohexanoic Acid that Overcome Systemic Inflammatory Response Syndrome.
    Jeong HG; Cha BG; Kang DW; Kim DY; Yang W; Ki SK; Kim SI; Han J; Kim CK; Kim J; Lee SH
    Adv Healthc Mater; 2019 May; 8(9):e1801548. PubMed ID: 30843374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox enzyme-mimicking activities of CeO
    Yang Y; Mao Z; Huang W; Liu L; Li J; Li J; Wu Q
    Sci Rep; 2016 Oct; 6():35344. PubMed ID: 27748403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce
    Baldim V; Bedioui F; Mignet N; Margaill I; Berret JF
    Nanoscale; 2018 Apr; 10(15):6971-6980. PubMed ID: 29610821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered nanoceria modulate neutrophil oxidative response to low doses of UV-B radiation through the inhibition of reactive oxygen species production.
    Peloi KE; Ratti BA; Nakamura CV; Neal CJ; Sakthivel TS; Singh S; Seal S; de Oliveira Silva Lautenschlager S
    J Biomed Mater Res A; 2021 Dec; 109(12):2570-2579. PubMed ID: 34173708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variable
    Heckman KL; Estevez AY; DeCoteau W; Vangellow S; Ribeiro S; Chiarenzelli J; Hays-Erlichman B; Erlichman JS
    Front Pharmacol; 2019; 10():1599. PubMed ID: 32047435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anticancer therapeutic effect of cerium-based nanoparticles: known and unknown molecular mechanisms.
    Amaldoss MJN; Mehmood R; Yang JL; Koshy P; Kumar N; Unnikrishnan A; Sorrell CC
    Biomater Sci; 2022 Jul; 10(14):3671-3694. PubMed ID: 35686620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO
    Ma H; Liu Z; Koshy P; Sorrell CC; Hart JN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11937-11949. PubMed ID: 35229603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles.
    Korsvik C; Patil S; Seal S; Self WT
    Chem Commun (Camb); 2007 Mar; (10):1056-8. PubMed ID: 17325804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces.
    Singh S
    Biointerphases; 2016 Nov; 11(4):04B202. PubMed ID: 27806579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, Characterization and Multiple Biological Properties of Peptide-Modified Cerium Oxide Nanoparticles.
    Wang M; He H; Liu D; Ma M; Zhang Y
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of Monovalent Cerium-Based Metal Organic Frameworks as Bioinspired Superoxide Dismutase Mimics for Ionizing Radiation Protection.
    Liu Y; Li H; Liu W; Guo J; Yang H; Tang H; Tian M; Nie H; Zhang X; Long W
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54587-54597. PubMed ID: 36468174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis.
    Wasef L; Nassar AMK; El-Sayed YS; Samak D; Noreldin A; Elshony N; Saleh H; Elewa YHA; Hassan SMA; Saati AA; Hetta HF; Batiha GE; Umezawa M; Shaheen HM
    Sci Rep; 2021 Jan; 11(1):1310. PubMed ID: 33446707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles.
    Chen BH; Stephen Inbaraj B
    Crit Rev Biotechnol; 2018 Nov; 38(7):1003-1024. PubMed ID: 29402135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications.
    Gupta A; Das S; Neal CJ; Seal S
    J Mater Chem B; 2016 May; 4(19):3195-3202. PubMed ID: 32263255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-mediated reversal of the oxidation state dependent ROS scavenging and enzyme mimicking activity of ceria nanoparticles.
    Patel V; Singh M; Mayes ELH; Martinez A; Shutthanandan V; Bansal V; Singh S; Karakoti AS
    Chem Commun (Camb); 2018 Dec; 54(99):13973-13976. PubMed ID: 30480266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal stability and catalytic activity of cerium oxide nanoparticles in cell culture media.
    Ju X; Fučíková A; Šmíd B; Nováková J; Matolínová I; Matolín V; Janata M; Bělinová T; Hubálek Kalbáčová M
    RSC Adv; 2020 Oct; 10(65):39373-39384. PubMed ID: 35515371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator.
    Dogra Y; Arkill KP; Elgy C; Stolpe B; Lead J; Valsami-Jones E; Tyler CR; Galloway TS
    Nanotoxicology; 2016; 10(4):480-7. PubMed ID: 26554927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.