BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33939736)

  • 1. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network.
    Du G; Bu L; Hou Q; Zhou J; Lu B
    PLoS One; 2021; 16(5):e0250795. PubMed ID: 33939736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determine the compressive strength of calcium silicate bricks by combined nondestructive method.
    Brozovsky J
    ScientificWorldJournal; 2014; 2014():829794. PubMed ID: 25276864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Water Resistance of Magnesium Oxychloride Cement Concrete Based upon Hybrid-BP Neural Network.
    Wang P; Qiao H; Xue C; Feng Q
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm and its application in geotechnical engineering.
    Luo J; Ren R; Guo K
    PLoS One; 2020; 15(7):e0233398. PubMed ID: 32609717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes.
    Gebauer D; Beltrán Gutiérrez RE; Marx S; Butler M; Grahl K; Thiel T; Maack S; Küttenbaum S; Pirskawetz S; Breit W; Schickert M; Krüger M
    Data Brief; 2023 Jun; 48():109201. PubMed ID: 37213551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network.
    Du G; Bu L; Hou Q; Zhou J; Lu B
    PLoS One; 2021; 16(9):e0257650. PubMed ID: 34525132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nondestructive Determination of Strength of Concrete Incorporating Industrial Wastes as Partial Replacement for Fine Aggregate.
    Odimegwu TC; Kaish ABMA; Zakaria I; Abood MM; Jamil M; Ngozi KO
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches.
    de-Prado-Gil J; Palencia C; Jagadesh P; Martínez-García R
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack.
    Chen H; Qian C; Liang C; Kang W
    PLoS One; 2018; 13(1):e0191370. PubMed ID: 29346451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Optimized GA-BPNN Algorithm in English Teaching Quality Evaluation System.
    Zhu Y; Xu J; Zhang S
    Comput Intell Neurosci; 2021; 2021():4123254. PubMed ID: 35003243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test.
    Kocáb D; Misák P; Cikrle P
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes.
    Faraj RH; Mohammed AA; Omer KM; Ahmed HU
    Clean Technol Environ Policy; 2022; 24(7):2253-2281. PubMed ID: 35531082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of fetal weight based on back propagation neural network optimized by genetic algorithm.
    Gao H; Wu C; Huang D; Zha D; Zhou C
    Math Biosci Eng; 2021 May; 18(4):4402-4410. PubMed ID: 34198444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic based concrete defects identification
    Hu T; Zhao J; Zheng R; Wang P; Li X; Zhang Q
    PeerJ Comput Sci; 2021; 7():e635. PubMed ID: 34604513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of various machine learning algorithms to predict 28-day compressive strength of Self-compacting concrete.
    Inqiad WB; Siddique MS; Alarifi SS; Butt MJ; Najeh T; Gamil Y
    Heliyon; 2023 Nov; 9(11):e22036. PubMed ID: 38045144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines.
    Shih YF; Wang YR; Lin KL; Chen CW
    Materials (Basel); 2015 Oct; 8(10):7169-7178. PubMed ID: 28793627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.