BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33939795)

  • 21. CNNGRN: A Convolutional Neural Network-Based Method for Gene Regulatory Network Inference From Bulk Time-Series Expression Data.
    Gao Z; Tang J; Xia J; Zheng CH; Wei PJ
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2853-2861. PubMed ID: 37267145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Bi-Objective RNN Model to Reconstruct Gene Regulatory Network: A Modified Multi-Objective Simulated Annealing Approach.
    Biswas S; Acharyya S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2053-2059. PubMed ID: 29990170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NSRGRN: a network structure refinement method for gene regulatory network inference.
    Liu W; Yang Y; Lu X; Fu X; Sun R; Yang L; Peng L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37078865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification.
    Spurney R; Schwartz M; Gobble M; Sozzani R; Van den Broeck L
    Methods Mol Biol; 2021; 2328():47-65. PubMed ID: 34251619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-objective Simulated Annealing Variants to Infer Gene Regulatory Network: A Comparative Study.
    Biswas S; Acharyya S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2612-2623. PubMed ID: 32386161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Reconstruction and Analysis of Gene Regulatory Networks.
    Zheng G; Huang T
    Methods Mol Biol; 2018; 1754():137-154. PubMed ID: 29536441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inference of gene regulatory subnetworks from time course gene expression data.
    Liang XJ; Xia Z; Zhang LW; Wu FX
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S3. PubMed ID: 22901088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D3GRN: a data driven dynamic network construction method to infer gene regulatory networks.
    Chen X; Li M; Zheng R; Wu FX; Wang J
    BMC Genomics; 2019 Dec; 20(Suppl 13):929. PubMed ID: 31881937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large scale gene regulatory network inference with a multi-level strategy.
    Wu J; Zhao X; Lin Z; Shao Z
    Mol Biosyst; 2016 Feb; 12(2):588-97. PubMed ID: 26687446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    GarcĂ­a-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.
    Razaghi-Moghadam Z; Nikoloski Z
    NPJ Syst Biol Appl; 2020 Jun; 6(1):21. PubMed ID: 32606380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding.
    Gao Z; Su Y; Xia J; Cao RF; Ding Y; Zheng CH; Wei PJ
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
    Vatsa D; Agarwal S
    PLoS One; 2021; 16(5):e0251666. PubMed ID: 33989333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational prediction of gene regulatory networks in plant growth and development.
    Haque S; Ahmad JS; Clark NM; Williams CM; Sozzani R
    Curr Opin Plant Biol; 2019 Feb; 47():96-105. PubMed ID: 30445315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.