BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33939921)

  • 41. Multicolour single molecule imaging in cells with near infra-red dyes.
    Tynan CJ; Clarke DT; Coles BC; Rolfe DJ; Martin-Fernandez ML; Webb SE
    PLoS One; 2012; 7(4):e36265. PubMed ID: 22558412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bright, color-tunable fluorescent dyes in the Vis/NIR region: establishment of new "tailor-made" multicolor fluorophores based on borondipyrromethene.
    Umezawa K; Matsui A; Nakamura Y; Citterio D; Suzuki K
    Chemistry; 2009; 15(5):1096-106. PubMed ID: 19117043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Synthesis of RhodIndolizine Dyes with Improved Stability and Shortwave Infrared Emission up to 1250 nm.
    Chatterjee S; Shaik AK; Wijesinghe KH; Ndaleh D; Dass A; Hammer NI; Delcamp JH
    J Org Chem; 2022 Sep; 87(17):11319-11328. PubMed ID: 35984405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.
    Kobayashi H; Koyama Y; Barrett T; Hama Y; Regino CA; Shin IS; Jang BS; Le N; Paik CH; Choyke PL; Urano Y
    ACS Nano; 2007 Nov; 1(4):258-64. PubMed ID: 19079788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photophysical Properties of Indocyanine Green in the Shortwave Infrared Region.
    Cosco ED; Lim I; Sletten EM
    ChemPhotoChem; 2021 Aug; 5(8):727-734. PubMed ID: 34504949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorogenic polymethine dyes by intramolecular cyclization.
    Martin A; Rivera-Fuentes P
    Curr Opin Chem Biol; 2024 Jun; 80():102444. PubMed ID: 38520774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices.
    Strassel K; Hu WH; Osbild S; Padula D; Rentsch D; Yakunin S; Shynkarenko Y; Kovalenko M; Nüesch F; Hany R; Bauer M
    Sci Technol Adv Mater; 2021 Apr; 22(1):194-204. PubMed ID: 33907525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shortwave infrared fluorescence imaging of peripheral organs in awake and freely moving mice.
    Arús BA; Cosco ED; Yiu J; Balba I; Bischof TS; Sletten EM; Bruns OT
    Front Neurosci; 2023; 17():1135494. PubMed ID: 37274204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging.
    Liu T; Luo S; Wang Y; Tan X; Qi Q; Shi C
    Drug Des Devel Ther; 2014; 8():1287-97. PubMed ID: 25246770
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein.
    Oliinyk OS; Ma C; Pletnev S; Baloban M; Taboada C; Sheng H; Yao J; Verkhusha VV
    Nat Methods; 2023 Jan; 20(1):70-74. PubMed ID: 36456785
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shortwave-infrared (SWIR) emitting annexin V for high-contrast fluorescence molecular imaging of tumor apoptosis in living mice.
    Swamy MMM; Tsuboi S; Murai Y; Monde K; Jin T
    RSC Adv; 2022 Jun; 12(30):19632-19639. PubMed ID: 35865555
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Moreno MJ; Ling B; Stanimirovic DB
    Expert Opin Drug Discov; 2020 Aug; 15(8):903-915. PubMed ID: 32396023
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of near-infrared fluorescent rhodamines via an S
    Wang Q; Huang K; Cai S; Liu C; Jiao X; He S; Zhao L; Zeng X
    Org Biomol Chem; 2018 Oct; 16(39):7163-7169. PubMed ID: 30246856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A lysosome-targeted near-infrared fluorescent probe for imaging of acid phosphatase in living cells.
    Cai S; Liu C; Jiao X; He S; Zhao L; Zeng X
    Org Biomol Chem; 2020 Feb; 18(6):1148-1154. PubMed ID: 31971197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defining a polymethine dye for fluorescence anisotropy applications in the near-infrared spectral range.
    Gustafson TP; Cao Q; Achilefu S; Berezin MY
    Chemphyschem; 2012 Feb; 13(3):716-23. PubMed ID: 22302715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system.
    Venugopal V; Park M; Ashitate Y; Neacsu F; Kettenring F; Frangioni JV; Gangadharan SP; Gioux S
    J Biomed Opt; 2013 Dec; 18(12):126018. PubMed ID: 24362927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Targeting Nanoprobes with Non-Overlap Emission in the Second Near-Infrared Window for
    Yu GT; Luo MY; Li H; Chen S; Huang B; Sun ZJ; Cui R; Zhang M
    ACS Nano; 2019 Nov; 13(11):12830-12839. PubMed ID: 31621290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.