These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 33939971)
1. Improving the detection limit of Salmonella colorimetry using long ssDNA of asymmetric-PCR and non-functionalized AuNPs. Wang L; Wu X; Hu H; Huang Y; Yang X; Wang Q; Chen X Anal Biochem; 2021 Aug; 626():114229. PubMed ID: 33939971 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Wei S; Wang X; Wang F; Hao X; Li H; Su Z; Guo Y; Shi X; Liu X; Li J; Zhao C Anal Bioanal Chem; 2022 Aug; 414(20):6069-6076. PubMed ID: 35689117 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric method for Salmonella spp. detection based on peroxidase-like activity of Cu(II)-rGO nanoparticles and PCR. Wang L; Liao T; Zhou H; Huang Y; Chen P; Yang X; Chen X Anal Biochem; 2021 Feb; 615():114068. PubMed ID: 33340541 [TBL] [Abstract][Full Text] [Related]
4. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection. He H; Dai J; Duan Z; Zheng B; Meng Y; Guo Y; Dan Xiao Sci Rep; 2016 Aug; 6():30878. PubMed ID: 27477392 [TBL] [Abstract][Full Text] [Related]
5. Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Zhang W; Wang Y; Nan M; Li Y; Yun J; Wang Y; Bi Y Food Chem; 2021 Jun; 348():129128. PubMed ID: 33516992 [TBL] [Abstract][Full Text] [Related]
6. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Yi J; Wu P; Li G; Xiao W; Li L; He Y; He Y; Ding P; Chen C Mikrochim Acta; 2019 Oct; 186(11):711. PubMed ID: 31650251 [TBL] [Abstract][Full Text] [Related]
7. Magnetic Nanoparticles-based Aptasensor Using Gold Nanoparticles as Colorimetric Probes for the Detection of Salmonella typhimurium. Duan N; Xu B; Wu S; Wang Z Anal Sci; 2016; 32(4):431-6. PubMed ID: 27063716 [TBL] [Abstract][Full Text] [Related]
8. Application of a dual-modality colorimetric analysis method to inkjet printing lateral flow detection of Salmonella typhimurium. Yu YC; Wang Z; Ji X; Williamson EJ; Cordoba HM; Ulloa-Gomez AM; Deering AJ; Chiu GT; Allebach JP; Stanciu LA Mikrochim Acta; 2024 Aug; 191(9):559. PubMed ID: 39177690 [TBL] [Abstract][Full Text] [Related]
9. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. António M; Ferreira R; Vitorino R; Daniel-da-Silva AL Talanta; 2020 Jul; 214():120868. PubMed ID: 32278414 [TBL] [Abstract][Full Text] [Related]
10. Label-free colorimetric assay for arsenic(III) determination based on a truncated short ssDNA and gold nanoparticles. Zhang D; Liu Y; Ding J; Hayat K; Zhan X; Zhou P; Zhang D Mikrochim Acta; 2021 Jan; 188(2):38. PubMed ID: 33432381 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Fan X; Bao Y; Chen Y; Wang X; On SLW; Wang J Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667162 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles. Jiao Y; Liu Q; Qiang H; Chen Z Mikrochim Acta; 2018 Sep; 185(10):452. PubMed ID: 30209628 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Deng H; Xu Y; Liu Y; Che Z; Guo H; Shan S; Sun Y; Liu X; Huang K; Ma X; Wu Y; Liang XJ Anal Chem; 2012 Feb; 84(3):1253-8. PubMed ID: 22243128 [TBL] [Abstract][Full Text] [Related]
14. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. Du J; Yu Z; Hu Z; Chen J; Zhao J; Bai Y J Microbiol Methods; 2021 Jan; 180():106110. PubMed ID: 33271208 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation. Song Y; Feng D; Shao S; Liang J Talanta; 2018 Sep; 187():308-313. PubMed ID: 29853052 [TBL] [Abstract][Full Text] [Related]
16. A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Ma X; Song L; Zhou N; Xia Y; Wang Z Int J Food Microbiol; 2017 Mar; 245():1-5. PubMed ID: 28107686 [TBL] [Abstract][Full Text] [Related]
17. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Deng H; Zhang X; Kumar A; Zou G; Zhang X; Liang XJ Chem Commun (Camb); 2013 Jan; 49(1):51-3. PubMed ID: 23145437 [TBL] [Abstract][Full Text] [Related]
19. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Wang Y; Yang F; Yang X Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604 [TBL] [Abstract][Full Text] [Related]
20. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Li B; Du Y; Dong S Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]