These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33940026)
21. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. Fu T; Yi J; Lv S; Zhang B J Liposome Res; 2017 Sep; 27(3):228-233. PubMed ID: 27601177 [TBL] [Abstract][Full Text] [Related]
22. Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery. Xu T; Zhang J; Chi H; Cao F Acta Biomater; 2016 May; 36():152-63. PubMed ID: 26940970 [TBL] [Abstract][Full Text] [Related]
23. In Vitro Anti-inflammatory and Antimicrobial Activities of Azithromycin After Loaded in Chitosan- and Tween 20-Based Oil-in-Water Macroemulsion for Acne Management. Shunmugaperumal T; Kaur V AAPS PharmSciTech; 2016 Jun; 17(3):700-9. PubMed ID: 26314246 [TBL] [Abstract][Full Text] [Related]
24. Mucoadhesive niosomal in situ gel for ocular tissue targeting: in vitro and in vivo evaluation of lomefloxacin hydrochloride. Abdelbary A; Salem HF; Khallaf RA; Ali AM Pharm Dev Technol; 2017 May; 22(3):409-417. PubMed ID: 27476543 [TBL] [Abstract][Full Text] [Related]
25. Proniosome-derived niosomes for tacrolimus topical ocular delivery: in vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Li Q; Li Z; Zeng W; Ge S; Lu H; Wu C; Ge L; Liang D; Xu Y Eur J Pharm Sci; 2014 Oct; 62():115-23. PubMed ID: 24905830 [TBL] [Abstract][Full Text] [Related]
26. Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of Azithromycin. Ullah S; Shah MR; Shoaib M; Imran M; Shah SW; Ali I; Ahmed F Drug Dev Ind Pharm; 2017 Jun; 43(6):1011-1022. PubMed ID: 28157445 [TBL] [Abstract][Full Text] [Related]
27. A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: artificial neural network optimization, in vitro characterization and in vivo evaluation. El Menshawe SF; Aboud HM; Elkomy MH; Kharshoum RM; Abdeltwab AM Drug Deliv Transl Res; 2020 Apr; 10(2):471-485. PubMed ID: 31677149 [TBL] [Abstract][Full Text] [Related]
28. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Guinedi AS; Mortada ND; Mansour S; Hathout RM Int J Pharm; 2005 Dec; 306(1-2):71-82. PubMed ID: 16263229 [TBL] [Abstract][Full Text] [Related]
29. Formulation and Evaluation of Niosomal in situ Nasal Gel of a Serotonin Receptor Agonist, Buspirone Hydrochloride for the Brain Delivery via Intranasal Route. Mathure D; Madan JR; Gujar KN; Tupsamundre A; Ranpise HA; Dua K Pharm Nanotechnol; 2018; 6(1):69-78. PubMed ID: 29380709 [TBL] [Abstract][Full Text] [Related]
30. Improvement of acetazolamide ocular permeation using ascorbyl laurate nanostructures as drug delivery system. Tártara LI; Quinteros DA; Saino V; Allemandi DA; Palma SD J Ocul Pharmacol Ther; 2012 Apr; 28(2):102-9. PubMed ID: 22060001 [TBL] [Abstract][Full Text] [Related]
31. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Li J; Tan G; Cheng B; Liu D; Pan W Eur J Pharm Biopharm; 2017 Nov; 120():89-97. PubMed ID: 28867370 [TBL] [Abstract][Full Text] [Related]
32. Promising Antifungal Potential of Engineered Non-ionic Surfactant-Based Vesicles: In Vitro and In Vivo Studies. Verma A; Jain A; Tiwari A; Saraf S; Panda PK; Jain SK AAPS PharmSciTech; 2021 Jan; 22(1):19. PubMed ID: 33389224 [TBL] [Abstract][Full Text] [Related]
33. Novel Mucoadhesive Chitosomes as a Platform for Enhanced Oral Bioavailability of Cinnarizine. Oransa HA; Boughdady MF; El-Sabbagh HM Int J Nanomedicine; 2022; 17():5641-5660. PubMed ID: 36452306 [TBL] [Abstract][Full Text] [Related]
34. Formulation of carteolol chitosomes for ocular delivery: formulation optimization, Zafar A; Alruwaili NK; Imam SS; Alsaidan OA; Alharbi KS; Yasir M; Elmowafy M; Ansari MJ; Salahuddin M; Alshehri S Cutan Ocul Toxicol; 2021 Dec; 40(4):338-349. PubMed ID: 34340615 [No Abstract] [Full Text] [Related]
35. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Teaima MH; El Mohamady AM; El-Nabarawi MA; Mohamed AI Drug Dev Ind Pharm; 2020 May; 46(5):751-761. PubMed ID: 32250181 [TBL] [Abstract][Full Text] [Related]
36. Pharmacokinetic and Pharmacodynamic Evaluation of Gemifloxacin Chitosan Nanoparticles As an Antibacterial Ocular Dosage Form. Hassan HAFM; Ali AI; ElDesawy EM; ElShafeey AH J Pharm Sci; 2022 May; 111(5):1497-1508. PubMed ID: 34929155 [TBL] [Abstract][Full Text] [Related]
37. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and Khallaf RA; Aboud HM; Sayed OM J Liposome Res; 2020 Jun; 30(2):163-173. PubMed ID: 31039651 [TBL] [Abstract][Full Text] [Related]
38. Preparation and evaluation of novel chitosan: gelrite ocular system containing besifloxacin for topical treatment of bacterial conjunctivitis: scintigraphy, ocular irritation and retention assessment. Imam SS; Bukhari SNA; Ali A Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):959-967. PubMed ID: 28708424 [TBL] [Abstract][Full Text] [Related]
39. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Sohrabi S; Haeri A; Mahboubi A; Mortazavi A; Dadashzadeh S Int J Biol Macromol; 2016 Apr; 85():625-33. PubMed ID: 26794314 [TBL] [Abstract][Full Text] [Related]
40. Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5%w/v) in experimental conjunctivitis in albino rabbits. Yasin MN; Hussain S; Malik F; Hameed A; Sultan T; Qureshi F; Riaz H; Perveen G; Wajid A Pak J Pharm Sci; 2012 Jan; 25(1):117-21. PubMed ID: 22186318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]