BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33940503)

  • 1. Production of selenium-enriched microalgae as potential feed supplement in high-rate algae ponds treating domestic wastewater.
    Li J; Otero-Gonzalez L; Michiels J; Lens PNL; Du Laing G; Ferrer I
    Bioresour Technol; 2021 Aug; 333():125239. PubMed ID: 33940503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case study on the effect continuous CO
    Young P; Taylor MJ; Buchanan N; Lewis J; Fallowfield HJ
    J Environ Manage; 2019 Dec; 251():109614. PubMed ID: 31563600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery.
    Arashiro LT; Ferrer I; Rousseau DPL; Van Hulle SWH; Garfí M
    Bioresour Technol; 2019 May; 280():27-36. PubMed ID: 30754003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS).
    Leong YK; Huang CY; Chang JS
    J Environ Manage; 2021 Oct; 296():113193. PubMed ID: 34237671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper multifaceted interferences during swine wastewater treatment in high-rate algal ponds: alterations on nutrient removal, biomass composition and resource recovery.
    Oliveira APS; Assemany P; Covell L; Calijuri ML
    Environ Pollut; 2023 May; 324():121364. PubMed ID: 36849087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying filamentous algae nutrient scrubbers for improved wastewater treatment and harvestability - comparison with microalgae.
    Sutherland DL; Burke J
    J Environ Manage; 2023 Dec; 348():119339. PubMed ID: 37883837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes.
    Villar-Navarro E; Baena-Nogueras RM; Paniw M; Perales JA; Lara-Martín PA
    Water Res; 2018 Aug; 139():19-29. PubMed ID: 29621714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp.
    de Morais EG; Murillo AM; Lens PNL; Ferrer I; Uggetti E
    Sci Total Environ; 2022 Dec; 851(Pt 2):158337. PubMed ID: 36030875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2017 Nov; 124():504-512. PubMed ID: 28802135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model.
    Solimeno A; García J
    Sci Total Environ; 2019 Feb; 650(Pt 2):1818-1831. PubMed ID: 30286350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater.
    Cho DH; Choi JW; Kang Z; Kim BH; Oh HM; Kim HS; Ramanan R
    Sci Rep; 2017 May; 7(1):1979. PubMed ID: 28512332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swine wastewater treatment in high rate algal ponds: Effects of Cu and Zn on nutrient removal, productivity and biomass composition.
    Oliveira APS; Assemany P; Ribeiro Júnior JI; Covell L; Nunes-Nesi A; Calijuri ML
    J Environ Manage; 2021 Dec; 299():113668. PubMed ID: 34492441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can microalgae grown in wastewater reduce the use of inorganic fertilizers?
    Álvarez-González A; Uggetti E; Serrano L; Gorchs G; Ferrer I; Díez-Montero R
    J Environ Manage; 2022 Dec; 323():116224. PubMed ID: 36126597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery.
    Arashiro LT; Montero N; Ferrer I; Acién FG; Gómez C; Garfí M
    Sci Total Environ; 2018 May; 622-623():1118-1130. PubMed ID: 29890581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.
    Costa TO; Calijuri ML; Avelar NV; Carneiro ACO; de Assis LR
    Environ Technol; 2017 Aug; 38(15):1926-1936. PubMed ID: 27666287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2015 May; 184():202-214. PubMed ID: 25465780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.