BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33940503)

  • 21. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.
    Alcántara C; Muñoz R; Norvill Z; Plouviez M; Guieysse B
    Bioresour Technol; 2015 Feb; 177():110-7. PubMed ID: 25481561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production.
    Mark Ibekwe A; Murinda SE; Murry MA; Schwartz G; Lundquist T
    Sci Total Environ; 2017 Feb; 580():1185-1196. PubMed ID: 28003050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.
    Park JB; Craggs RJ
    Water Sci Technol; 2010; 61(3):633-9. PubMed ID: 20150699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.
    Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ
    Bioresour Technol; 2015 May; 184():222-229. PubMed ID: 25453429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer.
    Li J; Otero-Gonzalez L; Parao A; Tack P; Folens K; Ferrer I; Lens PNL; Du Laing G
    Chemosphere; 2021 Oct; 281():130767. PubMed ID: 34022598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy for the formation of microalgae-bacteria aggregates in high-rate algal ponds.
    Dos Santos Neto AG; Barragán-Trinidad M; Florêncio L; Buitrón G
    Environ Technol; 2023 May; 44(12):1863-1876. PubMed ID: 34898377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation and modelling of high rate algal ponds utilising secondary effluent at Western Water, Bacchus Marsh Recycled Water Plant.
    Wrede D; Hussainy SU; Rajendram W; Gray S
    Water Sci Technol; 2018 Aug; 78(1-2):20-30. PubMed ID: 30101785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system.
    Wang Z; Hartline CJ; Zhang F; He Z
    Water Res; 2021 Nov; 206():117722. PubMed ID: 34637970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate.
    de Godos I; Arbib Z; Lara E; Rogalla F
    Bioresour Technol; 2016 Nov; 220():253-261. PubMed ID: 27579799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds.
    Solimeno A; Parker L; Lundquist T; García J
    Sci Total Environ; 2017 Dec; 601-602():646-657. PubMed ID: 28577400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds.
    Hom-Diaz A; Norvill ZN; Blánquez P; Vicent T; Guieysse B
    Chemosphere; 2017 Aug; 180():33-41. PubMed ID: 28391150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.
    Sutherland DL; Montemezzani V; Mehrabadi A; Craggs RJ
    Water Res; 2016 Feb; 89():301-8. PubMed ID: 26707731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.
    Zhong Y; Cheng JJ
    J Agric Food Chem; 2017 Dec; 65(50):10875-10883. PubMed ID: 29179543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.
    Park JB; Craggs RJ; Shilton AN
    Water Res; 2013 Sep; 47(13):4422-32. PubMed ID: 23764593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innovative hybrid system for wastewater treatment: High-rate algal ponds for effluent treatment and biofilm reactor for biomass production and harvesting.
    Rodrigues de Assis L; Calijuri ML; Assemany PP; Silva TA; Teixeira JS
    J Environ Manage; 2020 Nov; 274():111183. PubMed ID: 32784083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden.
    Lage S; Toffolo A; Gentili FG
    Chemosphere; 2021 Aug; 276():130122. PubMed ID: 33690042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater.
    Kim BH; Choi JE; Cho K; Kang Z; Ramanan R; Moon DG; Kim HS
    J Microbiol Biotechnol; 2018 Apr; 28(4):630-637. PubMed ID: 29429325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems.
    García-Galán MJ; Arashiro L; Santos LHMLM; Insa S; Rodríguez-Mozaz S; Barceló D; Ferrer I; Garfí M
    J Hazard Mater; 2020 May; 390():121771. PubMed ID: 32127240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds.
    Norvill ZN; Toledo-Cervantes A; Blanco S; Shilton A; Guieysse B; Muñoz R
    Bioresour Technol; 2017 May; 232():35-43. PubMed ID: 28214443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.
    Drira N; Piras A; Rosa A; Porcedda S; Dhaouadi H
    Bioresour Technol; 2016 Apr; 206():239-244. PubMed ID: 26866759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.