BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33940503)

  • 41. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.
    Park JB; Craggs RJ
    Water Sci Technol; 2011; 63(10):2403-10. PubMed ID: 21977667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Sep; 61():130-40. PubMed ID: 24911561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro bioaccessibility of selenoamino acids from selenium (Se)-enriched Chlorella vulgaris biomass in comparison to selenized yeast; a Se-enriched food supplement; and Se-rich foods.
    Vu DL; Saurav K; Mylenko M; Ranglová K; Kuta J; Ewe D; Masojídek J; Hrouzek P
    Food Chem; 2019 May; 279():12-19. PubMed ID: 30611470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selenium Incorporation to Amino Acids in
    Mylenko M; Vu DL; Kuta J; Ranglová K; Kubáč D; Lakatos G; Grivalský T; Caporgno MP; da Câmara Manoel JA; Kopecký J; Masojídek J; Hrouzek P
    J Agric Food Chem; 2020 Feb; 68(6):1654-1665. PubMed ID: 31935099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of phosphorus limitation on Se uptake efficiency in the microalga Nannochloropsis oceanica.
    Guimarães BO; Van der Graaf Y; Kunert I; Wijffels RH; Barbosa MJ; D'Adamo S
    Bioresour Technol; 2023 Jan; 367():128239. PubMed ID: 36332861
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microalgae-bacteria tandem-type ponds simultaneously removing ammonia nitrogen and phosphorus towards municipal wastewater advanced treatment.
    Liu Z; Geng Y; Zhang Y; Cui D; Yang L; Xiong Z; Pavlostathis SG; Shao P; Luo X
    Environ Res; 2022 Nov; 214(Pt 3):114076. PubMed ID: 35970376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of selenium- and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts.
    Li J; Lens PNL; Otero-Gonzalez L; Du Laing G
    Water Res; 2020 Apr; 172():115522. PubMed ID: 32006774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation.
    Silveira CF; Assis LR; Oliveira APS; Calijuri ML
    Sci Total Environ; 2021 Oct; 789():147861. PubMed ID: 34049147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment.
    Su Y
    Sci Total Environ; 2021 Mar; 762():144590. PubMed ID: 33360454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance evaluation of novel attached-growth high rate algal pond system with additional artificial illumination for wastewater treatment and nutrient recovery.
    Jinda K; Koottatep T; Chaiwong C; Polprasert C
    Water Sci Technol; 2020 Jul; 82(1):97-106. PubMed ID: 32910795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Balancing Microalgae and Nitrifiers for Wastewater Treatment: Can Inorganic Carbon Limitation Cause an Environmental Threat?
    Casagli F; Rossi S; Steyer JP; Bernard O; Ficara E
    Environ Sci Technol; 2021 Mar; 55(6):3940-3955. PubMed ID: 33657315
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the effect of the feeding regime on the removal of metals and pathogens in microalgae-bacterial systems.
    Farias SL; Ruas G; Serejo ML; Boncz MÁ
    Water Sci Technol; 2023 Jul; 88(1):11-22. PubMed ID: 37452530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.
    Cho DH; Ramanan R; Heo J; Kang Z; Kim BH; Ahn CY; Oh HM; Kim HS
    Bioresour Technol; 2015 Sep; 191():481-7. PubMed ID: 25746593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the feasibility of aquaculture feed by using microalgae.
    Ansari FA; Guldhe A; Gupta SK; Rawat I; Bux F
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43234-43257. PubMed ID: 34173144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems.
    Magalhães IB; Ferreira J; Castro JS; Assis LR; Calijuri ML
    Sci Total Environ; 2022 Aug; 834():155282. PubMed ID: 35447175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.
    Drira N; Dhouibi N; Hammami S; Piras A; Rosa A; Porcedda S; Dhaouadi H
    Bioresour Technol; 2017 Nov; 244(Pt 1):860-864. PubMed ID: 28841791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater.
    Lindberg RH; Namazkar S; Lage S; Östman M; Gojkovic Z; Funk C; Gentili FG; Tysklind M
    Chemosphere; 2021 May; 271():129763. PubMed ID: 33736225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.
    Park JB; Craggs RJ; Shilton AN
    Water Res; 2013 Sep; 47(14):4904-17. PubMed ID: 23866138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural pigments from microalgae grown in industrial wastewater.
    Arashiro LT; Boto-Ordóñez M; Van Hulle SWH; Ferrer I; Garfí M; Rousseau DPL
    Bioresour Technol; 2020 May; 303():122894. PubMed ID: 32032937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.
    Santiago AF; Calijuri ML; Assemany PP; Calijuri Mdo C; dos Reis AJ
    Environ Technol; 2013; 34(13-16):1877-85. PubMed ID: 24350441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.