These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33940722)

  • 1. Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter.
    Yang Y; Wang Y; Huang W; Yao D; Zhao S; Wang Y; Ji D; Zhang R; Wang Y
    Sci Total Environ; 2021 Jun; 773():145264. PubMed ID: 33940722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis for the impacts of VOC subgroups and atmospheric oxidation capacity on O
    Wang R; Wang L; Yang Y; Zhan J; Ji D; Hu B; Ling Z; Xue M; Zhao S; Yao D; Liu Y; Wang Y
    Environ Res; 2024 May; 248():118250. PubMed ID: 38244964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain.
    Yang Y; Wang Y; Yao D; Zhao S; Yang S; Ji D; Sun J; Wang Y; Liu Z; Hu B; Zhang R; Wang Y
    Environ Pollut; 2020 Aug; 263(Pt A):114657. PubMed ID: 33618483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China.
    Liu Z; Wang Y; Hu B; Lu K; Tang G; Ji D; Yang X; Gao W; Xie Y; Liu J; Yao D; Yang Y; Zhang Y
    Sci Total Environ; 2021 Jun; 771():145306. PubMed ID: 33736127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China.
    Kong L; Zhou L; Chen D; Luo L; Xiao K; Chen Y; Liu H; Tan Q; Yang F
    Sci Total Environ; 2023 Nov; 901():166259. PubMed ID: 37595915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric oxidation capacity and O
    Chen G; Liu T; Chen J; Xu L; Hu B; Yang C; Fan X; Li M; Hong Y; Ji X; Chen J; Zhang F
    J Environ Sci (China); 2024 Feb; 136():68-80. PubMed ID: 37923476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemistry in the urban agglomeration along the coastline of southeastern China: Pollution mechanism and control implication.
    Chen G; Shi Q; Xu L; Yu S; Lin Z; Ji X; Fan X; Hong Y; Li M; Zhang F; Chen J; Chen J
    Sci Total Environ; 2023 Nov; 901():166318. PubMed ID: 37586504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of summertime O
    Wang X; Yin S; Zhang R; Yuan M; Ying Q
    Sci Total Environ; 2022 Mar; 813():152449. PubMed ID: 34942256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity.
    Sun J; Shen Z; Wang R; Li G; Zhang Y; Zhang B; He K; Tang Z; Xu H; Qu L; Sai Hang Ho S; Liu S; Cao J
    Environ Int; 2021 Jan; 146():106279. PubMed ID: 33276317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year.
    Kumar V; Sinha V
    Chemosphere; 2021 Nov; 283():131184. PubMed ID: 34146869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.
    Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H
    Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China.
    Li Z; Xue L; Yang X; Zha Q; Tham YJ; Yan C; Louie PKK; Luk CWY; Wang T; Wang W
    Sci Total Environ; 2018 Jan; 612():1114-1122. PubMed ID: 28892855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characterization and Source Apportionment of Atmospheric VOCs in Tianjin in 2019].
    Gao JY; Xiao ZM; Xu H; Li LW; Li P; Tang M; Yang N; Li Y; Bi WK; Chen K
    Huan Jing Ke Xue; 2021 Jan; 42(1):55-64. PubMed ID: 33372457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Seasonal Pollution Characteristics and Analysis of the Sources of Atmospheric VOCs in Chengdu Urban Area].
    Wang CH; Chen JH; Han L; Xu CX; Wang B; Li YJ; Liu Z; Qian J
    Huan Jing Ke Xue; 2020 Sep; 41(9):3951-3960. PubMed ID: 33124274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of biogenic and photochemical sources to ambient VOCs during winter to summer transition at a semi-arid urban site in India.
    Sahu LK; Tripathi N; Yadav R
    Environ Pollut; 2017 Oct; 229():595-606. PubMed ID: 28689148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sources Apportionment of Oxygenated Volatile Organic Compounds (OVOCs) in a Typical Southwestern Region in China During Summer].
    Chen ML; Wang SN; Chen TS; Zhu B; Peng C; Zhou JW; Che HX; Huang RH; Yang FM; Liu HF; Tan QW; Han L; Chen JH; Lu KD; Chen Y
    Huan Jing Ke Xue; 2021 Jun; 42(6):2648-2658. PubMed ID: 34032064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Photochemical Mechanism and Control Strategy Optimization for Summertime Ozone Pollution in an Industrial City in the North China Plain].
    Zheng ZS; Dou JP; Zhang GT; Li LM; Xu B; Yang W; Bai ZP
    Huan Jing Ke Xue; 2023 Apr; 44(4):1821-1829. PubMed ID: 37040933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of source profiles for volatile organic compounds from typical volatile emission sources.
    Niu Z; Kong S; Zheng H; Yan Q; Liu J; Feng Y; Wu J; Zheng S; Zeng X; Yao L; Zhang Y; Fan Z; Cheng Y; Liu X; Wu F; Qin S; Yan Y; Ding F; Liu W; Zhu K; Liu D; Qi S
    Sci Total Environ; 2021 Jan; 751():141741. PubMed ID: 32889467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and transformation of volatile organic compounds at a regional background site in Hong Kong: Varied photochemical processes from different source regions.
    Yuan Q; Zhang Z; Chen Y; Hui L; Wang M; Xia M; Zou Z; Wei W; Ho KF; Wang Z; Lai S; Zhang Y; Wang T; Lee S
    Sci Total Environ; 2024 Jan; 908():168316. PubMed ID: 37949123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.