These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33940749)

  • 21. Chromate reduction by zero-valent Al metal as catalyzed by polyoxometalate.
    Lin CJ; Wang SL; Huang PM; Tzou YM; Liu JC; Chen CC; Chen JH; Lin C
    Water Res; 2009 Dec; 43(20):5015-22. PubMed ID: 19729183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review.
    Fan Q; Wang L; Fu Y; Li Q; Liu Y; Wang Z; Zhu H
    Sci Total Environ; 2023 Jan; 855():159003. PubMed ID: 36155041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays.
    Chen N; Fang G; Zhu C; Wu S; Liu G; Dionysiou DD; Wang X; Gao J; Zhou D
    J Hazard Mater; 2020 May; 389():121819. PubMed ID: 31848100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acid-washed zero-valent aluminum as a highly efficient persulfate activator for degradation of phenacetin.
    Wu J; Wang B; Qu H; Wang F; Duan L; Yu G
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):19439-19449. PubMed ID: 36229732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibacterial Mechanisms of Reduced Iron-Containing Smectite-Illite Clay Minerals.
    Guo D; Xia Q; Zeng Q; Wang X; Dong H
    Environ Sci Technol; 2021 Nov; 55(22):15256-15265. PubMed ID: 34723508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Fenton-like system (Mg/Fe-O
    Yang Z; Zhang X; Pu S; Ni R; Lin Y; Liu Y
    Environ Pollut; 2019 Jul; 250():906-913. PubMed ID: 31085477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative removal of bisphenol A using zero valent aluminum-acid system.
    Liu W; Zhang H; Cao B; Lin K; Gan J
    Water Res; 2011 Feb; 45(4):1872-8. PubMed ID: 21185583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the medicinal use of clay minerals as antibacterial agents.
    Williams LB; Haydel SE
    Int Geol Rev; 2010 Jul; 52(7/8):745-770. PubMed ID: 20640226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H
    Cui HJ; Ning Y; Wu C; Peng W; Cheng D; Yin L; Zhou W; Liao W
    J Environ Sci (China); 2023 Feb; 124():688-698. PubMed ID: 36182174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel zero-valent Co-Fe encapsulated in nitrogen-doped porous carbon nanocomposites derived from CoFe
    Zhou Y; Zhang Y; Hu X
    J Colloid Interface Sci; 2020 Sep; 575():206-219. PubMed ID: 32361237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of 4-chlorophenol from polluted water by aluminum-iron alloys.
    Wu S; Tang K; Zhang J; Chen X; Hu H; Hu Q; Yang XJ
    Water Sci Technol; 2019 Sep; 80(6):1099-1106. PubMed ID: 31799953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial reaction between organic acids and iron-containing clay minerals: Hydroxyl radical generation and phenolic compounds degradation.
    Zhao S; Liu Z; Zhang R; Liu J; Liu J; Dai Y; Zhang C; Jia H
    Sci Total Environ; 2021 Aug; 783():147025. PubMed ID: 34088140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneous photo-Fenton process using iron-modified regional clays as catalysts: photonic and quantum efficiencies.
    De León MA; Sergio M; Bussi J; Ortiz de la Plata GB; Alfano OM
    Environ Sci Pollut Res Int; 2019 May; 26(13):12720-12730. PubMed ID: 30877547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H
    Chen N; Fang G; Liu G; Zhou D; Gao J; Gu C
    J Hazard Mater; 2018 Sep; 357():483-490. PubMed ID: 29936346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced nontronite-activated H
    Liu X; Yuan S; Zhang P; Zhu J; Tong M
    J Hazard Mater; 2020 Mar; 386():121945. PubMed ID: 31893557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation.
    Zeng Q; Wang X; Liu X; Huang L; Hu J; Chu R; Tolic N; Dong H
    Environ Sci Technol; 2020 Dec; 54(23):15013-15023. PubMed ID: 32991154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemical degradation and mineralization of 4-chlorophenol.
    Catalkaya EC; Bali U; Sengül F
    Environ Sci Pollut Res Int; 2003; 10(2):113-20. PubMed ID: 12729044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.